Publication:
Classification of ALS Disease Using Support Vector Machines

dc.authorscopusid55807927000
dc.authorscopusid7801457993
dc.contributor.authorKüçük, H.
dc.contributor.authorEminoǧlu, I.
dc.date.accessioned2025-12-10T23:00:12Z
dc.date.issued2015
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Küçük] Hanife, Elektrik-Elektronik Mühendislii Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Eminoǧlu] Ilyas, Elektrik-Elektronik Mühendislii Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this study, SVM (Support Vector Machine) algorithm is used for the diagnosis of ALS which is the most common type of motor neuron disease. Before classification of EMG data with SVM (Support Vector Machine); pre-processing, segmentation, feature extraction and clustering stages of data are completed. In the stage of clustering, hybrid and hierarchical clustering methods are employed. After that, feature vectors in time and frequency domains and their different combinations (a total of 11 feature vectors) are fed to the SVM and the obtained results are observed. It is understood that the advantages of clustering methods dependent on the feature vectors; multiple feature vectors provide high performance in the diagnosis of ALS disease and exhibit much lower discrepancy. © 2015 IEEE.en_US
dc.identifier.doi10.1109/SIU.2015.7130171
dc.identifier.endpage1667en_US
dc.identifier.isbn9781467373869
dc.identifier.scopus2-s2.0-84939178752
dc.identifier.scopusqualityN/A
dc.identifier.startpage1664en_US
dc.identifier.urihttps://doi.org/10.1109/SIU.2015.7130171
dc.identifier.urihttps://hdl.handle.net/20.500.12712/35280
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 -- 2015-05-16 Through 2015-05-19 -- Malatya -- 113052en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectALSen_US
dc.subjectEMGen_US
dc.subjectHierarchical Clusteringen_US
dc.subjectSVMen_US
dc.titleClassification of ALS Disease Using Support Vector Machinesen_US
dc.title.alternativeDestek Vektör Makinesi Kullanarak ALS Hastalığının Sınıflandırılmasıen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files