Publication:
Automatic Landslide Segmentation Using a Combination of Grad-CAM Visualization and K-Means Clustering Techniques

dc.authorscopusid6506359290
dc.authorscopusid12242101900
dc.authorscopusid57189090432
dc.authorwosidAdanur, Süleyman/Aat-3469-2020
dc.authorwosidHacıefendioğlu, Kemal/Aak-3192-2021
dc.authorwosidDemir, Gokhan/Ize-7391-2023
dc.contributor.authorHaciefendioglu, Kemal
dc.contributor.authorAdanur, Suleyman
dc.contributor.authorDemir, Gokhan
dc.contributor.authorIDHacıefendioğlu, Kemal/0000-0002-5791-8053
dc.contributor.authorIDDemir, Gokhan/0000-0002-3734-1496
dc.date.accessioned2025-12-11T01:15:39Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Haciefendioglu, Kemal; Adanur, Suleyman] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkiye; [Demir, Gokhan] Ondokuz Mayis Univ, Dept Civil Engn, TR-55139 Samsun, Turkiyeen_US
dc.descriptionHacıefendioğlu, Kemal/0000-0002-5791-8053; Demir, Gokhan/0000-0002-3734-1496;en_US
dc.description.abstractRapid detection and accurate mapping of landslides are crucial for damage detection and subsequent prevention of secondary damage. In this study, a deep learning-based segmentation model called CAM-K-SEG was proposed, which combined Grad-CAM visualization and K-Mean clustering methods to automatically detect landslide areas using satellite images. The methodology involved applying the CAM-K-SEG model to satellite images in the Bijou region of China and comparing its performance with that of K-Mean clustering and U-Net segmentation models. The optimum K value was determined by the elbow method to determine the effective color number. The weighted object was detected by removing small objects from the image, and the convolution process was performed with the mean Kernel method to remove noise or improve features. The performance of the CAM-K-SEG model was evaluated based on Intersection-Over-Union (IoU), the most used metric in semantic segmentation. The results demonstrated that the CAM-K-SEG model performed comparably to the U-Net model in segmenting landslide areas and could help improve the rapid detection of landslide areas after an event. Overall, the study contributed to the development of a new model for landslide image segmentation, which could more precisely and sensitively distinguish landslide regions. The CAM-K-SEG model was identified as a promising tool for automatic landslide detection and could be used in various applications that required accurate detection of landslide areas.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s40996-023-01193-9
dc.identifier.endpage959en_US
dc.identifier.issn2228-6160
dc.identifier.issn2364-1843
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85165167676
dc.identifier.scopusqualityQ2
dc.identifier.startpage943en_US
dc.identifier.urihttps://doi.org/10.1007/s40996-023-01193-9
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42439
dc.identifier.volume48en_US
dc.identifier.wosWOS:001032070600001
dc.language.isoenen_US
dc.publisherSpringer int Publ Agen_US
dc.relation.ispartofIranian Journal of Science and Technology - Transactions of Civil Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Nerve Networken_US
dc.subjectLandslideen_US
dc.subjectGrad-CAMen_US
dc.subjectU-Neten_US
dc.subjectK-Means Clusteringen_US
dc.titleAutomatic Landslide Segmentation Using a Combination of Grad-CAM Visualization and K-Means Clustering Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files