Publication:
Dynamics of a Fractional Order Mathematical Model for COVID-19 Epidemic

dc.authorscopusid55503051100
dc.authorscopusid15924309000
dc.authorscopusid57203101423
dc.authorscopusid16303495600
dc.authorwosidEgbelowo, Oluwaseun/T-8180-2019
dc.authorwosidEgbelowo, Oluwaseun Francis/T-8180-2019
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.contributor.authorZhang, Zizhen
dc.contributor.authorZeb, Anwar
dc.contributor.authorEgbelowo, Oluwaseun Francis
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorIDIssa, Bushra/0000-0002-0327-7916
dc.contributor.authorIDEgbelowo, Oluwaseun Francis/0000-0002-5636-4642
dc.date.accessioned2025-12-11T01:16:09Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Zhang, Zizhen] Anhui Univ Finance & Econ, Sch Management Sci & Engn, Bengbu 233030, Peoples R China; [Zeb, Anwar] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunk, Pakistan; [Egbelowo, Oluwaseun Francis] Univ Cape Town, Dept Med, Div Clin Pharmacol, Cape Town, South Africa; [Erturk, Vedat Suat] Ondokuz Mays Univ, Fac Arts & Sci, Dept Math, TR-55139 Samsun, Turkeyen_US
dc.descriptionIssa, Bushra/0000-0002-0327-7916; Egbelowo, Oluwaseun Francis/0000-0002-5636-4642;en_US
dc.description.abstractIn this work, we formulate and analyze a new mathematical model for COVID-19 epidemic with isolated class in fractional order. This model is described by a system of fractional-order differential equations model and includes five classes, namely, S (susceptible class), E (exposed class), I (infected class), Q (isolated class), and R (recovered class). Dynamics and numerical approximations for the proposed fractional-order model are studied. Firstly, positivity and boundedness of the model are established. Secondly, the basic reproduction number of the model is calculated by using the next generation matrix approach. Then, asymptotic stability of the model is investigated. Lastly, we apply the adaptive predictor-corrector algorithm and fourth-order Runge-Kutta (RK4) method to simulate the proposed model. Consequently, a set of numerical simulations are performed to support the validity of the theoretical results. The numerical simulations indicate that there is a good agreement between theoretical results and numerical ones.en_US
dc.description.sponsorshipNatural Science Foundation of the Higher Education Institutions of Anhui Province [KJ2020A0002]en_US
dc.description.sponsorshipThis paper was supported by the Natural Science Foundation of the Higher Education Institutions of Anhui Province (No. KJ2020A0002).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1186/s13662-020-02873-w
dc.identifier.issn1687-1847
dc.identifier.issue1en_US
dc.identifier.pmid32834820
dc.identifier.scopus2-s2.0-85089410814
dc.identifier.urihttps://doi.org/10.1186/s13662-020-02873-w
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42508
dc.identifier.volume2020en_US
dc.identifier.wosWOS:000562796500002
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCOVID-19 Epidemicen_US
dc.subjectStability Analysisen_US
dc.subjectAdaptive Predictor-Corrector Algorithmen_US
dc.subjectFractional Differential Equationsen_US
dc.subjectNumerical Simulationsen_US
dc.titleDynamics of a Fractional Order Mathematical Model for COVID-19 Epidemicen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files