Publication:
A New Robust Regression Method Based on Particle Swarm Optimization

dc.authorscopusid57200651210
dc.authorscopusid24282075600
dc.authorscopusid23093703600
dc.contributor.authorCagcag Yolcu, O.
dc.contributor.authorYolcu, U.
dc.contributor.authorEgrioglu, E.
dc.date.accessioned2020-06-21T13:51:38Z
dc.date.available2020-06-21T13:51:38Z
dc.date.issued2015
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cagcag Yolcu] Ozge, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yolcu] Ufuk, Department of Statistics, Ankara Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Marmara Üniversitesi, Istanbul, Turkeyen_US
dc.description.abstractRegression analysis is one of methods widely used in prediction problems. Although there are many methods used for parameter estimation in regression analysis, ordinary least squares (OLS) technique is the most commonly used one among them. However, this technique is highly sensitive to outlier observation. Therefore, in literature, robust techniques are suggested when data set includes outlier observation. Besides, in prediction a problem, using the techniques that reduce the effectiveness of outlier and using the median as a target function rather than an error mean will be more successful in modeling these kinds of data. In this study, a new parameter estimation method using the median of absolute rate obtained by division of the difference between observation values and predicted values by the observation value and based on particle swarm optimization was proposed. The performance of the proposed method was evaluated with a simulation study by comparing it with OLS and some other robust methods in the literature. © © 2015 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610926.2012.718843
dc.identifier.endpage1280en_US
dc.identifier.issn0361-0926
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-84961368828
dc.identifier.scopusqualityQ2
dc.identifier.startpage1270en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2012.718843
dc.identifier.volume44en_US
dc.identifier.wosWOS:000351581900012
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLinear Modelen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectRobust Regression Estimatoren_US
dc.subjectSimulationen_US
dc.titleA New Robust Regression Method Based on Particle Swarm Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files