Publication:
Investigation of Appropriate Classification Method for EOG-Based Human Computer Interface

dc.authorscopusid57904777900
dc.authorscopusid56246751800
dc.authorwosidAras, Selim/Hji-5147-2023
dc.contributor.authorAl-Zubaidi, Muna Layth Abdulateef
dc.contributor.authorAras, Selim
dc.contributor.authorIDAras, Selim/0000-0003-1231-5782
dc.date.accessioned2025-12-11T00:51:51Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Al-Zubaidi, Muna Layth Abdulateef; Aras, Selim] Ondokuz Mayis Univ, Elekt Elekt Muhendisligi, Samsun, Turkeyen_US
dc.descriptionAras, Selim/0000-0003-1231-5782en_US
dc.description.abstractThe reason why real feelings and mood changes can be seen through our eyes is that the eyes provide the most revealing and accurate information of all human communication signs. It is possible to control a human- computer interface by voluntarily moving the eyes, which have an important place in communication. In this study, the appropriate feature and classification methods were investigated to use the Electooculography signs obtained from seven different voluntary eye movements in the human-computer interface. The success of the system is increased by determining the combination that gives the best result from many features by using the sequential forward feature selection method. The developed method reached 93.9% success in the seven-class dataset. The results show that humancomputer interface control can be done with high accuracy with voluntary eye movements. Also, the development of a real-time working model is inspiring for work.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/SIU55565.2022.9864953
dc.identifier.isbn9781665450928
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-85138741928
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864953
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39773
dc.identifier.wosWOS:001307163400291
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof30th IEEE Signal Processing and Communications Applications Conference (SIU) -- May 15-18, 2022 -- Safranbolu, Turkeyen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectrooculogramen_US
dc.subjectHuman Computer Interfaceen_US
dc.subjectClassificationen_US
dc.titleInvestigation of Appropriate Classification Method for EOG-Based Human Computer Interfaceen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files