Publication:
Trust Region Framework-Based Design of Sub-6 GHz M-MIMO Antenna and Evaluation of SAR

dc.authorscopusid57200282805
dc.authorscopusid43261063600
dc.authorwosidKorunur Engiz, Begum/Jvz-5212-2024
dc.contributor.authorTurgut, Ahmet
dc.contributor.authorEngiz, Begüm Korunur
dc.date.accessioned2025-12-11T00:39:00Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Turgut, Ahmet; Engiz, Begum Korunur] Ondokuz Mayis Univ, Dept Elect & Elect Engn, Samsun, Turkiyeen_US
dc.description.abstractPurposeCurrently, massive multiple-input multiple-output (m-MIMO) antennas are typically designed using complex trial-and-error methods. The purpose of this study is to determine an effective optimization method to achieve more efficient antenna design processes.Design/methodology/approachThis paper presents the design stages of a m-MIMO antenna array compatible with 5G smartphones operating in long term evolution (LTE) bands 42, 43 and 46, based on a specific algorithm. Each antenna element in the designed 10-port m-MIMO antenna array is intended to perfectly cover the three specified LTE bands. The optimization methods used for this purpose include the Nelder-Mead simplex algorithm, covariance matrix adaptation evolution strategy, particle swarm optimization and trust region framework (TRF).FindingsAmong the primary optimization algorithms, the TRF algorithm met the defined objectives most effectively. The achieved antenna efficiency values exceeded 60.81% in the low band and 68.39% in the high band, along with perfect coverage of the desired bands, demonstrating the success of the design with the TRF algorithm. In addition, the potential electromagnetic field exposure caused by the designed m-MIMO antenna array is elaborated upon in detail using computational human models through specific absorption rate analysis.Originality/valueThe comparison of four different algorithms (two local and two global) for use in the design of a 10-element m-MIMO antenna array with a complex structural configuration and the success of the design implemented with the selected algorithm distinguish this study from others.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1108/COMPEL-11-2023-0596
dc.identifier.endpage690en_US
dc.identifier.issn0332-1649
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85192510259
dc.identifier.scopusqualityQ4
dc.identifier.startpage669en_US
dc.identifier.urihttps://doi.org/10.1108/COMPEL-11-2023-0596
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38214
dc.identifier.volume43en_US
dc.identifier.wosWOS:001216579200001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofCOMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAntennaen_US
dc.subjectDesign Optimization Methodologyen_US
dc.subjectOptimal Designen_US
dc.subjectS-Parameter Analysisen_US
dc.titleTrust Region Framework-Based Design of Sub-6 GHz M-MIMO Antenna and Evaluation of SARen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files