Publication: Estimation of Nutrient Concentrations in Runoff from Beef Cattle Feedlot Using Adaptive Neuro-Fuzzy Inference Systems
| dc.authorscopusid | 57197005919 | |
| dc.authorscopusid | 55976027400 | |
| dc.authorscopusid | 21743556600 | |
| dc.authorscopusid | 57203518993 | |
| dc.contributor.author | Simsek, H. | |
| dc.contributor.author | Cemek, B. | |
| dc.contributor.author | Odabaş, M.S. | |
| dc.contributor.author | Rahman, S. | |
| dc.date.accessioned | 2020-06-21T13:51:16Z | |
| dc.date.available | 2020-06-21T13:51:16Z | |
| dc.date.issued | 2015 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Simsek] Halis, NDSU College of Engineering, Fargo, ND, United States; [Cemek] Bilal, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Rahman] S., NDSU College of Engineering, Fargo, ND, United States | en_US |
| dc.description.abstract | Nutrient concentrations in runoff from beef cattle feedlots were esti- mated using two different adaptive network-based fuzzy inference systems (ANFIS), which were: (1) grid partition (ANFIS-GP) and (2) subtractive clustering based fuzzy inference system (ANFIS-SC). The input parameters were pH and electrical conductivity (EC); and the output parameters were total Kjeldahl nitrogen (TKN), ammonium-N (NH<inf>4-</inf>N), orthophosphate (ortho-P), and potassium (K). Models per- formances were evaluated based on root mean square error, mean absolute error, mean bias error, and determination coefficient statistics. For the same dataset, the ANFIS model outputs were also compared with a previously published nutrient concentration predictability model for runoff using artificial neural network (ANN) outputs. Results showed that both ANFIS-GP and ANFIS-SC models successfully predicted the runoff nutrient concentration. The comparison results revealed that the ANFIS-GP model performed slightly better than ANFIS-SC model in estimat- ing TKN, NH<inf>4-</inf>N, ortho-P, and K. When compared with the ANN model for the same dataset, ANFIS outperformed ANN in nutrient concentration prediction in runoff. © CTU FTS 2015. | en_US |
| dc.identifier.doi | 10.14311/NNW.2015.25.025 | |
| dc.identifier.endpage | 518 | en_US |
| dc.identifier.issn | 1210-0552 | |
| dc.identifier.issn | 2336-4335 | |
| dc.identifier.issue | 5 | en_US |
| dc.identifier.scopus | 2-s2.0-84987741065 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 501 | en_US |
| dc.identifier.uri | https://doi.org/10.14311/NNW.2015.25.025 | |
| dc.identifier.volume | 25 | en_US |
| dc.identifier.wos | WOS:000365835300002 | |
| dc.identifier.wosquality | Q4 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Computer Science Pod vodarenskou vezi 2 Prague 8, 18207 | en_US |
| dc.relation.ispartof | Neural Network World | en_US |
| dc.relation.journal | Neural Network World | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Cattle Feedlot | en_US |
| dc.subject | Grid Partition Based Fuzzy Inference System (ANFIS-GP) | en_US |
| dc.subject | Nutrient Concentration | en_US |
| dc.subject | Subtractive Clustering Based Fuzzy Inference System (ANFIS-SC) | en_US |
| dc.title | Estimation of Nutrient Concentrations in Runoff from Beef Cattle Feedlot Using Adaptive Neuro-Fuzzy Inference Systems | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
