Publication:
Estimation of Nutrient Concentrations in Runoff from Beef Cattle Feedlot Using Adaptive Neuro-Fuzzy Inference Systems

dc.authorscopusid57197005919
dc.authorscopusid55976027400
dc.authorscopusid21743556600
dc.authorscopusid57203518993
dc.contributor.authorSimsek, H.
dc.contributor.authorCemek, B.
dc.contributor.authorOdabaş, M.S.
dc.contributor.authorRahman, S.
dc.date.accessioned2020-06-21T13:51:16Z
dc.date.available2020-06-21T13:51:16Z
dc.date.issued2015
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Simsek] Halis, NDSU College of Engineering, Fargo, ND, United States; [Cemek] Bilal, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Rahman] S., NDSU College of Engineering, Fargo, ND, United Statesen_US
dc.description.abstractNutrient concentrations in runoff from beef cattle feedlots were esti- mated using two different adaptive network-based fuzzy inference systems (ANFIS), which were: (1) grid partition (ANFIS-GP) and (2) subtractive clustering based fuzzy inference system (ANFIS-SC). The input parameters were pH and electrical conductivity (EC); and the output parameters were total Kjeldahl nitrogen (TKN), ammonium-N (NH<inf>4-</inf>N), orthophosphate (ortho-P), and potassium (K). Models per- formances were evaluated based on root mean square error, mean absolute error, mean bias error, and determination coefficient statistics. For the same dataset, the ANFIS model outputs were also compared with a previously published nutrient concentration predictability model for runoff using artificial neural network (ANN) outputs. Results showed that both ANFIS-GP and ANFIS-SC models successfully predicted the runoff nutrient concentration. The comparison results revealed that the ANFIS-GP model performed slightly better than ANFIS-SC model in estimat- ing TKN, NH<inf>4-</inf>N, ortho-P, and K. When compared with the ANN model for the same dataset, ANFIS outperformed ANN in nutrient concentration prediction in runoff. © CTU FTS 2015.en_US
dc.identifier.doi10.14311/NNW.2015.25.025
dc.identifier.endpage518en_US
dc.identifier.issn1210-0552
dc.identifier.issn2336-4335
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-84987741065
dc.identifier.scopusqualityQ4
dc.identifier.startpage501en_US
dc.identifier.urihttps://doi.org/10.14311/NNW.2015.25.025
dc.identifier.volume25en_US
dc.identifier.wosWOS:000365835300002
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherInstitute of Computer Science Pod vodarenskou vezi 2 Prague 8, 18207en_US
dc.relation.ispartofNeural Network Worlden_US
dc.relation.journalNeural Network Worlden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCattle Feedloten_US
dc.subjectGrid Partition Based Fuzzy Inference System (ANFIS-GP)en_US
dc.subjectNutrient Concentrationen_US
dc.subjectSubtractive Clustering Based Fuzzy Inference System (ANFIS-SC)en_US
dc.titleEstimation of Nutrient Concentrations in Runoff from Beef Cattle Feedlot Using Adaptive Neuro-Fuzzy Inference Systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files