Publication:
Multipliers and the Relative Completion in $\L^p_w(G)$

dc.contributor.authorDuyar, C.
dc.contributor.authorGürkanlı, A. T.
dc.date.accessioned2020-06-21T10:44:39Z
dc.date.available2020-06-21T10:44:39Z
dc.date.issued2007
dc.departmentOMÜen_US
dc.department-tempOndokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Samsun, Türkiye -- Ondokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Samsun, Türkiye -- ONDOKUZ MAYIS ÜNİVERSİTESİ -- ONDOKUZ MAYIS ÜNİVERSİTESİ --en_US
dc.description.abstractQuek and Yap defined a relative completion \widetilde A for a linear subspace A of Lp(G), 1\leq p < \infty; and proved that there is an isometric isomorphism, between Hom_{L1(G)}(L1(G), A) and \widetilde A, where Hom_{L1(G)}(L1(G),A) is the space of the module homomorphisms (or multipliers) from L1(G) to A. Inth e present, we defined a relative completion \widetilde A for a linear subspace A of Lp_w(G) ,where w is a Beurling‘s weighted function and Lp_w(G) is the weighted Lp(G) space, ([14]). Also, we proved that there is an algeabric isomorphism and homeomorphism, between Hom_{L1_w(G)}(L1_w(G),A) and \widetilde A. At the end of this work we gave some applications and examples.en_US
dc.identifier.endpage191en_US
dc.identifier.issn1300-0098
dc.identifier.issn1303-6149
dc.identifier.issue2en_US
dc.identifier.startpage181en_US
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TmpjeU1EZzQ=
dc.identifier.urihttps://hdl.handle.net/20.500.12712/9820
dc.identifier.volume31en_US
dc.language.isoenen_US
dc.relation.journalTurkish Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.titleMultipliers and the Relative Completion in $\L^p_w(G)$en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files