Publication:
A Novel Two-Delayed Tri-Neuron Neural Network With an Incomplete Connection

dc.authorscopusid57217132593
dc.authorscopusid56678696600
dc.authorscopusid16303495600
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorLee, Tae H.
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.date.accessioned2025-12-11T01:05:00Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra; Lee, Tae H.] Jeonbuk Natl Univ, Div Elect Engn, Jeonju Si 54896, South Korea; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Atakum, Samsun, Turkiyeen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837;en_US
dc.description.abstractIn this paper, we propose a novel two-delayed tri-neuron neural network (NN) with no connection between the first and third neurons. Neural networks with incomplete connections offer a range of advantages, including improved efficiency, generalisation, interpretability, and biological plausibility, making them useful in various applications across different domains. Such kinds of NNs exist in some diseases, such as epilepsy, Alzheimer's, and schizophrenia, where the neuron's connections can be broken. Our NN is defined in two different forms: one with integer-order derivatives and another with Caputo fractional derivatives. The fundamental results of existence, uniqueness, and boundedness of the solution for the proposed NN are derived. We perform the bifurcation analysis along with the stability of the initial state of the fractional-order NN, considering self-connection delay and communication delay as bifurcation parameters, respectively. The proposed NN is numerically solved by using a recently proposed L1-predictor-corrector method with its error analysis. The theoretical proofs are verified through graphical simulations.en_US
dc.description.sponsorshipNational Research Foundation of Korea (NRF) - Korea government (MSIT) [RS-2023-00210401]en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00210401).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s11071-024-10066-3
dc.identifier.endpage20293en_US
dc.identifier.issn0924-090X
dc.identifier.issn1573-269X
dc.identifier.issue22en_US
dc.identifier.scopus2-s2.0-85200029321
dc.identifier.scopusqualityQ1
dc.identifier.startpage20269en_US
dc.identifier.urihttps://doi.org/10.1007/s11071-024-10066-3
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41200
dc.identifier.volume112en_US
dc.identifier.wosWOS:001283215300002
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNonlinear Dynamicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeural Networken_US
dc.subjectCaputo Fractional Derivativeen_US
dc.subjectBifurcationen_US
dc.subjectStabilityen_US
dc.subjectL1-Predictor-Corrector Methoden_US
dc.titleA Novel Two-Delayed Tri-Neuron Neural Network With an Incomplete Connectionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files