Publication:
Efficientfer: EfficientNetV2 Based Deep Learning Approach for Facial Expression Recognition

dc.authorscopusid59185584100
dc.authorscopusid22953804000
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.contributor.authorKonuk, Mehmet Emin
dc.contributor.authorKilic, Erdal
dc.contributor.authorIDKonuk, Mehmet Emi̇n/0009-0007-2227-4896
dc.date.accessioned2025-12-11T01:04:38Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Konuk, Mehmet Emin] S DataM Bilisim Teknol & Guvenligi, Samsun, Turkiye; [Kilic, Erdal] Ondokuz Mayis Univ, Bilgisayar Muhendisl Bolumu, Samsun, Turkiyeen_US
dc.descriptionKonuk, Mehmet Emi̇n/0009-0007-2227-4896;en_US
dc.description.abstractFacial expression recognition (FER), aiming to classify human emotions automatically, is a significant problem in computer vision. Recent advancements in deep learning and computer vision have led to notable progress in FER. This work proposes an enhanced emotion recognition framework utilizing the FER-2013 dataset, augmented with additional training data for improved generalization performance. The EfficientNetv2 architecture is employed with transfer learning for robust and comprehensive feature extraction. The proposed method leverages attention mechanisms to capture critical facial details while mitigating the influence of irrelevant information. The model trained with approximately 23.8 million parameters surpassed the performance of existing methods by classifying with %82.47 accuracy rate on the FER-2013 dataset. These results indicate the potential applicability of the proposed approach to emotion recognition tasks.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/ICHORA65333.2025.11017006
dc.identifier.isbn9798331510893
dc.identifier.isbn9798331510886
dc.identifier.issn2996-4385
dc.identifier.scopus2-s2.0-105008418182
dc.identifier.urihttps://doi.org/10.1109/ICHORA65333.2025.11017006
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41165
dc.identifier.wosWOS:001533792800034
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications-ICHORA -- May 23-24, 2025 -- Ankara, Türkiyeen_US
dc.relation.ispartofseriesInternational Congress on Human-Computer Interaction Optimization and Robotic Applications
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFacial Expression Recognitionen_US
dc.subjectDeep Learningen_US
dc.subjectTransfer Learningen_US
dc.subjectEmotional State Classificationen_US
dc.titleEfficientfer: EfficientNetV2 Based Deep Learning Approach for Facial Expression Recognitionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files