Publication:
Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling

dc.authorscopusid56541733100
dc.authorscopusid58184153400
dc.authorscopusid55976027400
dc.authorscopusid57197005919
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.authorwosidKüçüktopcu, Erdem/Aba-5376-2021
dc.authorwosidSiek, Halis/I-8514-2015
dc.authorwosidCemek, Emirhan/Gry-4635-2022
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.authorwosidSimsek, Halis/Gnm-6269-2022
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorCemek, Emirhan
dc.contributor.authorCemek, Bilal
dc.contributor.authorSimsek, Halis
dc.contributor.authorIDKüçüktopcu, Erdem/0000-0002-8708-2306
dc.contributor.authorIDSiek, Halis/0000-0001-9031-5142
dc.contributor.authorIDCemek, Emirhan/0000-0003-0722-6224
dc.date.accessioned2025-12-11T01:25:41Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kucuktopcu, Erdem; Cemek, Bilal] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Cemek, Emirhan] Istanbul Tech Univ, Dept Civil Engn, Hydraul & Water Resources Engn Program, TR-34469 Istanbul, Turkiye; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USAen_US
dc.descriptionKüçüktopcu, Erdem/0000-0002-8708-2306; Siek, Halis/0000-0001-9031-5142; Cemek, Emirhan/0000-0003-0722-6224;en_US
dc.description.abstractMachine learning (ML) models, including artificial neural networks (ANN), generalized neural regression networks (GRNN), and adaptive neuro-fuzzy interface systems (ANFIS), have received considerable attention for their ability to provide accurate predictions in various problem domains. However, these models may produce inconsistent results when solving linear problems. To overcome this limitation, this paper proposes hybridizations of ML and autoregressive integrated moving average (ARIMA) models to provide a more accurate and general forecasting model for evapotranspiration (ET0). The proposed models are developed and tested using daily ET0 data collected over 11 years (2010-2020) in the Samsun province of Turkiye. The results show that the ARIMA-GRNN model reduces the root mean square error by 48.38%, the ARIMA-ANFIS model by 8.56%, and the ARIMA-ANN model by 6.74% compared to the traditional ARIMA model. Consequently, the integration of ML with ARIMA models can offer more accurate and dependable prediction of daily ET0, which can be beneficial for many branches such as agriculture and water management that require dependable ET0 estimations.en_US
dc.description.woscitationindexScience Citation Index Expanded - Social Science Citation Index
dc.identifier.doi10.3390/su15075689
dc.identifier.issn2071-1050
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85152587993
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/su15075689
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43654
dc.identifier.volume15en_US
dc.identifier.wosWOS:000970209500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSustainabilityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBox-Jenkinsen_US
dc.subjectTime Series Modelingen_US
dc.subjectEvapotranspirationen_US
dc.subjectArtificial Intelligenceen_US
dc.titleHybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modelingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files