Publication: Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling
| dc.authorscopusid | 56541733100 | |
| dc.authorscopusid | 58184153400 | |
| dc.authorscopusid | 55976027400 | |
| dc.authorscopusid | 57197005919 | |
| dc.authorwosid | Küçüktopçu, Erdem/Aba-5376-2021 | |
| dc.authorwosid | Küçüktopcu, Erdem/Aba-5376-2021 | |
| dc.authorwosid | Siek, Halis/I-8514-2015 | |
| dc.authorwosid | Cemek, Emirhan/Gry-4635-2022 | |
| dc.authorwosid | Cemek, Bilal/Aaz-7757-2020 | |
| dc.authorwosid | Simsek, Halis/Gnm-6269-2022 | |
| dc.contributor.author | Kucuktopcu, Erdem | |
| dc.contributor.author | Cemek, Emirhan | |
| dc.contributor.author | Cemek, Bilal | |
| dc.contributor.author | Simsek, Halis | |
| dc.contributor.authorID | Küçüktopcu, Erdem/0000-0002-8708-2306 | |
| dc.contributor.authorID | Siek, Halis/0000-0001-9031-5142 | |
| dc.contributor.authorID | Cemek, Emirhan/0000-0003-0722-6224 | |
| dc.date.accessioned | 2025-12-11T01:25:41Z | |
| dc.date.issued | 2023 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Kucuktopcu, Erdem; Cemek, Bilal] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Cemek, Emirhan] Istanbul Tech Univ, Dept Civil Engn, Hydraul & Water Resources Engn Program, TR-34469 Istanbul, Turkiye; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA | en_US |
| dc.description | Küçüktopcu, Erdem/0000-0002-8708-2306; Siek, Halis/0000-0001-9031-5142; Cemek, Emirhan/0000-0003-0722-6224; | en_US |
| dc.description.abstract | Machine learning (ML) models, including artificial neural networks (ANN), generalized neural regression networks (GRNN), and adaptive neuro-fuzzy interface systems (ANFIS), have received considerable attention for their ability to provide accurate predictions in various problem domains. However, these models may produce inconsistent results when solving linear problems. To overcome this limitation, this paper proposes hybridizations of ML and autoregressive integrated moving average (ARIMA) models to provide a more accurate and general forecasting model for evapotranspiration (ET0). The proposed models are developed and tested using daily ET0 data collected over 11 years (2010-2020) in the Samsun province of Turkiye. The results show that the ARIMA-GRNN model reduces the root mean square error by 48.38%, the ARIMA-ANFIS model by 8.56%, and the ARIMA-ANN model by 6.74% compared to the traditional ARIMA model. Consequently, the integration of ML with ARIMA models can offer more accurate and dependable prediction of daily ET0, which can be beneficial for many branches such as agriculture and water management that require dependable ET0 estimations. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded - Social Science Citation Index | |
| dc.identifier.doi | 10.3390/su15075689 | |
| dc.identifier.issn | 2071-1050 | |
| dc.identifier.issue | 7 | en_US |
| dc.identifier.scopus | 2-s2.0-85152587993 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.3390/su15075689 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/43654 | |
| dc.identifier.volume | 15 | en_US |
| dc.identifier.wos | WOS:000970209500001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Sustainability | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Box-Jenkins | en_US |
| dc.subject | Time Series Modeling | en_US |
| dc.subject | Evapotranspiration | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.title | Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
