Publication: Lebesgue Ve Toplam Lebesgue Uzaylarında Ortalama Ergodik Teoremler
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
LEBESGUE VE TOPLAM LEBESGUE UZAYLARINDA ORTALAMA ERGODİK TEOREMLER ÖZET K bir kompleks Banach uzayı olsun. N. Dunford ve J. T. Schwartz 'Linear operators : Part 1 General Theory' isimli kitaplarında özel bir T operatörünün üslerinin (iterations) ortalamasını y=o olarak tanımladılar. Ayrıca A(n) ortalamalarının kuvvetli yakınsaklığı için T operatörü üzerinde bulunması gereken özelliklerden de bahsedildi. Çünkü bu ortalamalar istatiksel mekanik ve olasılık kuramında birçok probleme ışık tutuyordu. Daha sonra kitabın aym bölümünde ([10], s. 660-670) bu genel özellikler (X,E,//) bir sonlu pozitif ölçüm uzayı iken, If(X,I,,ju) Lebesgue uzaylanndaki operatörler için yorumlandı. Bu tezdeki bulgular bölümünün 1. kısmında Lp(X,I.,ju) Lebesgue uzaylarında ortalama Ergodik teoremleri irdeleniyor. 2. kısımda ise toplam Lebesgue uzayları olan (if + Ll')[X,T,,ju) uzaylarında tanımlı operatörler için ortalama Ergodik teoremler genelleştiriliyor. Anahtar Kelimeler: Ergodik, toplam Lebesgue uzayları, operatör üsleri, operatör üslerinin ortalamaları, temel küme.
11 MEAN ERGODIC THEOREMS IN LEBESGUE AND SUMS OF LEBESGUE SPACES ABSTRACT Let K be an arbitrary complex Banach space. N. Dunford and J.T.Schwartz, in their book named 'Linear Operators: Part 1 General Theory', defined the averages of iterates of a special linear operator T as A(n) = ^P. Also they mentioned the properties of T which are necessary and sufficient for strong convergence of A{n). Because these averages were shed light on many problems related with statistical mechanics and probability theory. Later, in the same section of the book (see[10], pp.660-667) these general conditions were explained for operators in a Lebesgue space IT (X,I,,ju) which have the form that is corresponded in statistical mechanics where (Jf,S,//) is a positive finite measure space. In the first section of the fourth chapter of this thesis, mean ergodic theorems in the Lebesgue spaces is studied. In the second section, in the sums of Lebesgue spaces, mean ergodic theorems are generalized for operators defined on (if + LqMx, £,//). KEYWORDS: Ergodic, sums of Lebesgue spaces, iterations of an operator, averages of iterates, fundamental set.
11 MEAN ERGODIC THEOREMS IN LEBESGUE AND SUMS OF LEBESGUE SPACES ABSTRACT Let K be an arbitrary complex Banach space. N. Dunford and J.T.Schwartz, in their book named 'Linear Operators: Part 1 General Theory', defined the averages of iterates of a special linear operator T as A(n) = ^P. Also they mentioned the properties of T which are necessary and sufficient for strong convergence of A{n). Because these averages were shed light on many problems related with statistical mechanics and probability theory. Later, in the same section of the book (see[10], pp.660-667) these general conditions were explained for operators in a Lebesgue space IT (X,I,,ju) which have the form that is corresponded in statistical mechanics where (Jf,S,//) is a positive finite measure space. In the first section of the fourth chapter of this thesis, mean ergodic theorems in the Lebesgue spaces is studied. In the second section, in the sums of Lebesgue spaces, mean ergodic theorems are generalized for operators defined on (if + LqMx, £,//). KEYWORDS: Ergodic, sums of Lebesgue spaces, iterations of an operator, averages of iterates, fundamental set.
Description
Tez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 2004
Libra Kayıt No: 23039
Libra Kayıt No: 23039
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
40
