Publication:
2-Bit Multiplication Quantum Circuit with Addition

dc.authorscopusid59392919100
dc.authorscopusid15833929800
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.contributor.authorAndishmand, Saadi
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.date.accessioned2025-12-11T00:51:15Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Andishmand, Saadi] Ondokuz Mayis Univ, TR-55200 Samsun, Turkiye; [Akleylek, Sedat] Univ Tartu, Tartu, Estoniaen_US
dc.descriptionAkleylek, Sedat/0000-0001-7005-6489en_US
dc.description.abstractThis paper presents a groundbreaking exploration into quantum computing's capacity to revolutionize computational arithmetic through the development of a 2-bit multiplication quantum circuit. Leveraging the unique properties of quantum mechanics, particularly the phenomena of superposition and entanglement, this study navigates beyond classical computing limits. It intricately designs and implements a quantum circuit capable of multiplying two binary numbers, demonstrating a significant advancement in quantum computational technology. Utilizing qubits, the quantum analogs of bits, the circuit fundamentally redefines the multiplication process, adhering to quantum mechanics principles rather than classical binary operations. Our approach emphasizes the intricate orchestration of quantum gates within the circuit, with a particular focus on Controlled NOT (CNOT) and Toffoli gates. These are crucial for the arithmetic logic underpinning our multiplication task, illustrating the nuanced application of quantum theory to practical computation. The circuit showcases a pragmatic application of quantum computing principles, contributing to the burgeoning field of quantum algorithms. It serves as a vital stepping stone toward realizing more complex quantum arithmetic operations and their broader applications. Implemented using IBM's Qiskit, a versatile quantum computing software development framework, the circuit's design and functionality were rigorously tested in simulated environments. The results validate the circuit's efficiency and accuracy, confirming the successful quantum multiplication of 2-bit numbers. This work not only enriches the existing quantum algorithm repository but also sets a precedent for future quantum computing endeavors, particularly in optimizing and scaling quantum arithmetic operations.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1007/978-3-031-73417-5_1
dc.identifier.endpage16en_US
dc.identifier.isbn9783031734168
dc.identifier.isbn9783031734175
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.scopus2-s2.0-85208041672
dc.identifier.scopusqualityQ4
dc.identifier.startpage3en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-73417-5_1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39702
dc.identifier.volume2225en_US
dc.identifier.wosWOS:001436937600001
dc.language.isoenen_US
dc.publisherSpringer International Publishing AGen_US
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.relation.ispartofseriesCommunications in Computer and Information Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectQuantum Computingen_US
dc.subjectQuantum Circuitsen_US
dc.subjectQubitsen_US
dc.subjectQiskiten_US
dc.subjectMultiplicationen_US
dc.title2-Bit Multiplication Quantum Circuit with Additionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files