Publication:
A Robust Hotelling Test Statistic for One Sample Case in High Dimensional Data

dc.authorscopusid58075450500
dc.authorwosidBulut, Hasan/Aag-4642-2019
dc.contributor.authorBulut, Hasan
dc.contributor.authorIDBulut, Hasan/0000-0002-6924-9651
dc.date.accessioned2025-12-11T00:53:17Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bulut, Hasan] Ondokuz Mayis Univ, Dept Stat, Samsun, Turkeyen_US
dc.descriptionBulut, Hasan/0000-0002-6924-9651;en_US
dc.description.abstractThe Hotelling T-2 statistic is used to test the hypothesis about the location parameter of multivariate Gaussian distribution, and it is significantly sensitive to outliers. Also, we cannot calculate it when the sample size is less than the number of variables because this statistic needs the inverse of the covariance matrix, and the sample covariance matrix is singular in high dimensional data. Although a new approach, based on shrinkage estimation, was proposed to solve this singularity problem, this estimator is still sensitive to outliers. On the other hand, a robust one sample Hotelling T-2 statistic was proposed by using the minimum covariance determinant (MCD) estimates instead of classical ones. Since the MCD estimates cannot be calculated when n < p, this statistic cannot be used in high-dimensional data. This study proposes to use the minimum regularized covariance determinant (MRCD) estimator instead of classical or MCD. The MRCD estimator is a robust location and scatter estimator, which can be calculated in high-dimensional data. We obtain the asymptotic distribution of the proposed test statistic using Monte Carlo simulations and examine the power and robustness properties of the test statistic with simulated datasets. As a result, we show that the approximate distribution of the test statistic is proper, and the proposed robust test statistic can be used to test the hypothesis about the location parameter of contaminated high dimensional data. Finally, we construct an R function in the MVTests package to perform our proposed test statistic.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/03610926.2021.1996606
dc.identifier.endpage4604en_US
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.issue13en_US
dc.identifier.scopus2-s2.0-85118205584
dc.identifier.scopusqualityQ2
dc.identifier.startpage4590en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2021.1996606
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39998
dc.identifier.volume52en_US
dc.identifier.wosWOS:000712282100001
dc.identifier.wosqualityQ3
dc.institutionauthorBulut, Hasan
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRobust Hotelling Test Statisticen_US
dc.subjectOne-Sample Hotelling Testen_US
dc.subjectHigh-Dimensional Dataen_US
dc.subjectMinimum Regularized Covariance Estimatorsen_US
dc.subjectShrinkage-Based Diagonal Hotelling Testen_US
dc.subjectMvTestsen_US
dc.titleA Robust Hotelling Test Statistic for One Sample Case in High Dimensional Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files