Publication:
Assessing Cadmium Stress Resilience in Myrtle Genotypes Using Machine Learning Predictive Models: A Comparative in Vitro Analysis

dc.authorscopusid6603354276
dc.authorscopusid58844376300
dc.authorscopusid36773090700
dc.authorscopusid55819710100
dc.authorscopusid35274457900
dc.authorscopusid24281979400
dc.authorwosidŞimşek, Özhan/J-1961-2018
dc.authorwosidTütüncü, Mehmet/V-8966-2017
dc.authorwosidSimsek, Ozhan/J-1961-2018
dc.authorwosidIsak, Musab/Kbc-8853-2024
dc.authorwosidKacar, Yildiz/E-7985-2018
dc.authorwosidDönmez, Dicle/J-7996-2018
dc.contributor.authorTütüncü, Mehmet
dc.contributor.authorIsak, Musab A.
dc.contributor.authorIzgu, Tolga
dc.contributor.authorDonmez, Dicle
dc.contributor.authorKacar, Yildiz Aka
dc.contributor.authorSimsek, Ozhan
dc.contributor.authorIDŞimşek, Özhan/0000-0001-5552-095X
dc.contributor.authorIDKacar, Yildiz/0000-0001-5314-7952
dc.contributor.authorIDTütüncü, Mehmet/0000-0003-4354-6620
dc.contributor.authorIDİzgü, Tolga/0000-0003-3754-7694
dc.contributor.authorIDIsak, Musab A/0000-0002-5711-0118
dc.date.accessioned2025-12-11T01:36:07Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tutuncu, Mehmet] Univ Ondokuz Mayis, Dept Hort, TR-55270 Samsun, Turkiye; [Isak, Musab A.; Simsek, Ozhan] Erciyes Univ, Grad Sch Nat & Appl Sci, Agr Sci & Technol Dept, TR-38280 Kayseri, Turkiye; [Izgu, Tolga] Natl Res Council Italy CNR, Inst BioEcon, I-50019 Florence, Italy; [Donmez, Dicle] Cukurova Univ, Biotechnol Res & Applicat Ctr, TR-01330 Adana, Turkiye; [Kacar, Yildiz Aka] Cukurova Univ, Agr Fac, Hort Dept, TR-01330 Adana, Turkiye; [Simsek, Ozhan] Erciyes Univ, Agr Fac, Hort Dept, TR-38030 Kayseri, Turkiyeen_US
dc.descriptionŞimşek, Özhan/0000-0001-5552-095X; Kacar, Yildiz/0000-0001-5314-7952; Tütüncü, Mehmet/0000-0003-4354-6620; İzgü, Tolga/0000-0003-3754-7694; Isak, Musab A/0000-0002-5711-0118en_US
dc.description.abstractThis study investigated the effects of cadmium (Cd) stress on the micropropagation and rooting dynamics of two myrtle (Myrtus communis L.) genotypes with different fruit colors under controlled in vitro conditions. We evaluated the response of these genotypes to varying concentrations of Cd (0, 100, 200, 300, 400, and 500 mu M) to determine dose-dependent effects on plantlet multiplication and root formation. Our results demonstrate that the white-fruited (WF) genotype exhibits greater resilience than the black-fruited (BF) genotype across all concentrations, maintaining higher multiplication rates and shoot heights. For instance, the multiplication rate at 100 mu M Cd was highest for WF at 6.73, whereas BF showed the lowest rate of 1.94 at 500 mu M. Similarly, increasing Cd levels significantly impaired root length and the number of roots for both genotypes, illustrating the detrimental impact of Cd on root system development. Additionally, this study incorporated machine learning (ML) models to predict growth outcomes. The multilayer perceptron (MLP) model, including random forest (RF) and XGBoost, was used to analyze the data. The MLP model performed notably well, demonstrating the potential of advanced computational tools in accurately predicting plant responses to environmental stress. For example, the MLP model accurately predicted shoot height with an R2 value of 0.87 and root length with an R2 of 0.99, indicating high predictive accuracy. Overall, our findings provide significant insights into the genotypic differences in Cd tolerance and the utility of ML models in plant science. These results underscore the importance of developing targeted strategies to enhance plant resilience in contaminated environments.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/horticulturae10060542
dc.identifier.issn2311-7524
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85197939769
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/horticulturae10060542
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44789
dc.identifier.volume10en_US
dc.identifier.wosWOS:001256535800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofHorticulturaeen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHeavy Metal Toleranceen_US
dc.subjectPlant Stressen_US
dc.subjectGenotypic Variationen_US
dc.subjectToxic Metal Accumulationen_US
dc.subjectArtificial Intelligence in Horticultureen_US
dc.titleAssessing Cadmium Stress Resilience in Myrtle Genotypes Using Machine Learning Predictive Models: A Comparative in Vitro Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files