Publication:
Multivariate Picture Fuzzy Time Series: New Definitions and a New Forecasting Method Based on Pi-Sigma Artificial Neural Network

dc.authorscopusid55927757900
dc.authorscopusid23093703600
dc.authorscopusid55543036300
dc.authorwosidEgrioglu, Erol/Aae-4706-2019
dc.authorwosidBas, Eren/Jvn-5239-2024
dc.authorwosidTunc, Taner/G-5073-2016
dc.contributor.authorBas, Eren
dc.contributor.authorEgrioglu, Erol
dc.contributor.authorTunc, Taner
dc.contributor.authorIDBas, Eren/0000-0002-0263-8804
dc.contributor.authorIDEgrioglu, Erol/0000-0003-4301-4149
dc.date.accessioned2025-12-11T01:16:10Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bas, Eren; Egrioglu, Erol] Giresun Univ, Fac Arts & Sci, Dept Stat, Gure Campus, TR-28200 Giresun, Turkey; [Tunc, Taner] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Stat, TR-55139 Samsun, Turkeyen_US
dc.descriptionBas, Eren/0000-0002-0263-8804; Egrioglu, Erol/0000-0003-4301-4149;en_US
dc.description.abstractPicture fuzzy time series has been defined recently and a high order single variable forecasting method was proposed in the literature. Picture fuzzy time series definition is based on picture fuzzy sets which are the extended version of the fuzzy sets. So, more information is added for the modelling procedure with the use of picture fuzzy sets instead of classical fuzzy sets. In this study, high order multivariate picture fuzzy time series forecasting model is firstly defined and a forecasting algorithm based on this model is introduced. The proposed method uses picture fuzzy clustering and Pi-Sigma artificial neural networks as creating picture fuzzy time series and estimating of picture fuzzy forecasting model, respectively. The Pi-Sigma artificial neural network is trained by particle swarm optimization. The proposed method is applied to the TAIEX stock exchange data sets using Dow Jones and NASDAQ stock exchange data sets and Turkish lira exchange rates data sets using the dollar, euro and pound data sets as factor variables. The proposed method produces the best results among established benchmarks.en_US
dc.description.woscitationindexScience Citation Index Expanded - Social Science Citation Index
dc.identifier.doi10.1007/s10614-021-10202-w
dc.identifier.endpage164en_US
dc.identifier.issn0927-7099
dc.identifier.issn1572-9974
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85116020930
dc.identifier.scopusqualityQ2
dc.identifier.startpage139en_US
dc.identifier.urihttps://doi.org/10.1007/s10614-021-10202-w
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42509
dc.identifier.volume61en_US
dc.identifier.wosWOS:000701379600001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofComputational Economicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectPicture Fuzzy Clusteringen_US
dc.subjectPi-Sigma Neural Networken_US
dc.subjectMultivariate Time Seriesen_US
dc.subjectParticle Swarm Optimizationen_US
dc.titleMultivariate Picture Fuzzy Time Series: New Definitions and a New Forecasting Method Based on Pi-Sigma Artificial Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files