Publication:
Jackknife Kibria-Lukman Estimator for the Beta Regression Model

dc.authorscopusid57203396558
dc.authorscopusid57191925575
dc.authorwosidKoc, Tuba/Lvs-4547-2024
dc.contributor.authorKoc, Tuba
dc.contributor.authorDünder, Emre
dc.date.accessioned2025-12-11T00:38:58Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Koc, Tuba] Cankiri Karatekin Univ, Stat Dept, Cankiri, Turkiye; [Dunder, Emre] Ondokuz Mayis Univ, Stat Dept, Samsun, Turkiyeen_US
dc.description.abstractThe beta regression model is a flexible model, which widely used when the dependent variable is in ratios and percentages in the range of (0.1). The coefficients of the beta regression model are estimated using the maximum likelihood method. In cases where there is a multicollinearity problem, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance.In the presence of multicollinearity, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance. In this study, KL estimator and its jackknifed version are proposed to reduce the effects of multicollinearity in the beta regression model. The performance of the proposed jackknifed KL beta regression estimator is compared with ridge, Liu and KL estimators through simulation studies and real data applications. The results show that the proposed estimators mostly outperform ML, ridge, Liu and KL estimators.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/03610926.2023.2273206
dc.identifier.endpage7805en_US
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.issue21en_US
dc.identifier.scopus2-s2.0-85176144061
dc.identifier.scopusqualityQ2
dc.identifier.startpage7789en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2023.2273206
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38203
dc.identifier.volume53en_US
dc.identifier.wosWOS:001095008600001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBeta Regression Modelen_US
dc.subjectJackknife KL Estimatoren_US
dc.subjectKL Estimatoren_US
dc.subjectLiu Estimatoren_US
dc.subjectMulticollinearityen_US
dc.subjectRidge Estimatoren_US
dc.titleJackknife Kibria-Lukman Estimator for the Beta Regression Modelen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files