Publication:
Enhanced Panoramic Radiograph-Based Tooth Segmentation and Identification Using an Attention Gate-Based Encoder-Decoder Network

dc.authorscopusid57943567200
dc.authorscopusid57200282365
dc.authorscopusid12545159900
dc.authorscopusid57218294287
dc.authorscopusid57205643107
dc.authorscopusid57404871600
dc.authorscopusid58784492200
dc.authorwosidÖzçelik, Salih Taha Alperen/Gxf-4911-2022
dc.authorwosidFirat, Hüseyin/Abb-7417-2021
dc.authorwosidSobahi, Nebras/M-1327-2016
dc.authorwosidŞengür, Abdulkadir/V-7812-2018
dc.authorwosidGül, Sema/Jki-4873-2023
dc.authorwosidSengur, Abdulkadir/V-7812-2018
dc.authorwosidUzen, Huseyin/Czk-0841-2022
dc.contributor.authorOzcelik, Salih Taha Alperen
dc.contributor.authorUzen, Hueseyin
dc.contributor.authorSengur, Abdulkadir
dc.contributor.authorFirat, Hueseyin
dc.contributor.authorTurkoglu, Muammer
dc.contributor.authorCelebi, Adalet
dc.contributor.authorSobahi, Nebras M.
dc.contributor.authorIDÜzen, Hüseyin/0000-0002-0998-2130
dc.contributor.authorIDÖzçelik, Salih Taha Alperen/0000-0002-7929-7542
dc.contributor.authorIDSengur, Abdulkadir/0000-0003-1614-2639
dc.contributor.authorIDSobahi, Nebras/0000-0001-5788-5629
dc.date.accessioned2025-12-11T01:33:35Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozcelik, Salih Taha Alperen] Bingol Univ, Fac Engn, Dept Elect & Elect Engn, TR-12000 Bingol, Turkiye; [Uzen, Hueseyin] Bingol Univ, Fac Engn, Dept Comp Engn, TR-12000 Bingol, Turkiye; [Sengur, Abdulkadir] Firat Univ, Fac Technol, Dept Elect & Elect Engn, TR-23000 Elazig, Turkiye; [Firat, Hueseyin] Dicle Univ, Fac Engn, Dept Comp Engn, TR-21000 Diyarbakir, Turkiye; [Turkoglu, Muammer] Samsun Univ, Dept Software Engn, TR-55000 Samsun, Turkiye; [Celebi, Adalet] Mersin Univ, Fac Dent, Oral & Maxillofacial Surg Dept, TR-33000 Mersin, Turkiye; [Gul, Sema] Ondokuz Mayis Univ, Fac Hlth Sci, Dept Physiotherapy & Rehabil, TR-55000 Samsun, Turkiye; [Sobahi, Nebras M.] King Abdulaziz Univ, Fac Engn, Dept Elect & Elect Engn, Jeddah 21589, Saudi Arabiaen_US
dc.descriptionÜzen, Hüseyin/0000-0002-0998-2130; Özçelik, Salih Taha Alperen/0000-0002-7929-7542; Sengur, Abdulkadir/0000-0003-1614-2639; Sobahi, Nebras/0000-0001-5788-5629;en_US
dc.description.abstractBackground: Dental disorders are one of the most important health problems, affecting billions of people all over the world. Early diagnosis is important for effective treatment planning. Precise dental disease segmentation requires reliable tooth numbering, which may be prone to errors if performed manually. These steps can be automated using artificial intelligence, which may provide fast and accurate results. Among the AI methodologies, deep learning has recently shown excellent performance in dental image processing, allowing effective tooth segmentation and numbering. Methods: This paper proposes the Squeeze and Excitation Inception Block-based Encoder-Decoder (SE-IB-ED) network for teeth segmentation in panoramic X-ray images. It combines the InceptionV3 model for encoding with a custom decoder for feature integration and segmentation, using pointwise convolution and an attention mechanism. A dataset of 313 panoramic radiographs from private clinics was annotated using the F & eacute;d & eacute;ration Dentaire Internationale (FDI) system. PSPL and SAM augmented the annotation precision and effectiveness, with SAM automating teeth labeling and subsequently applying manual corrections. Results: The proposed SE-IB-ED network was trained and tested using 80% training and 20% testing of the dataset, respectively. Data augmentation techniques were employed during training. It outperformed the state-of-the-art models with a very high F1-score of 92.65%, mIoU of 86.38%, and 92.84% in terms of accuracy, precision of 92.49%, and recall of 99.92% in the segmentation of teeth. Conclusions: According to the results obtained, the proposed method has great potential for the accurate segmentation of all teeth regions and backgrounds in panoramic X-ray images.en_US
dc.description.sponsorshipFirat University, Scientific Research Project Committee; [TEKF.24.46]en_US
dc.description.sponsorshipThis study was supported by Firat University, Scientific Research Project Committee, under grant no: TEKF.24.46.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/diagnostics14232719
dc.identifier.issn2075-4418
dc.identifier.issue23en_US
dc.identifier.pmid39682627
dc.identifier.scopus2-s2.0-85211768911
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/diagnostics14232719
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44588
dc.identifier.volume14en_US
dc.identifier.wosWOS:001376963700001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofDiagnosticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTooth Segmentationen_US
dc.subjectTooth Labelingen_US
dc.subjectSqueeze and Excitationen_US
dc.subjectAttention Gateen_US
dc.subjectEncoder-Decoderen_US
dc.titleEnhanced Panoramic Radiograph-Based Tooth Segmentation and Identification Using an Attention Gate-Based Encoder-Decoder Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files