Publication:
Using Metaheuristic OFA Algorithm for Service Placement in Fog Computing

dc.authorscopusid58786400900
dc.authorscopusid6603381770
dc.authorwosidAltunay, Riza/Jzt-9532-2024
dc.authorwosidBay, Omer/Abd-7232-2021
dc.contributor.authorAltunay, Riza
dc.contributor.authorBay, Omer Faruk
dc.contributor.authorIDAltunay, Riza/0000-0001-8342-9790
dc.date.accessioned2025-12-11T00:51:49Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Altunay, Riza] Gazi Univ, Dept Informat Syst, TR-06680 Ankara, Turkiye; [Altunay, Riza] Ondokuz Mayis Univ, Dept Comp Technol, TR-55100 Samsun, Turkiye; [Bay, Omer Faruk] Gazi Univ, Dept Elect Engn, TR-06560 Ankara, Turkiyeen_US
dc.descriptionAltunay, Riza/0000-0001-8342-9790;en_US
dc.description.abstractThe use of fog computing in the Internet of Things (IoT) has emerged as a crucial solution, bringing cloud services closer to end users to process large amounts of data generated within the system. Despite its advantages, the increasing task demands from IoT objects often overload fog devices with limited resources, resulting in system delays, high network usage, and increased energy consumption. One of the major challenges in fog computing for IoT applications is the efficient deployment of services between fog clouds. To address this challenge, we propose a novel Optimal Foraging Algorithm (OFA) for task placement on appropriate fog devices, taking into account the limited resources of each fog node. The OFA algorithm optimizes task sharing between fog devices by evaluating incoming task requests based on their types and allocating the services to the most suitable fog nodes. In our study, we compare the performance of the OFA algorithm with two other popular algorithms: Genetic Algorithm (GA) and Randomized Search Algorithm (RA). Through extensive simulation experiments, our findings demonstrate significant improvements achieved by the OFA algorithm. Specifically, it leads to up to 39.06% reduction in energy consumption for the Elektroensefalografi (EEG) application, up to 25.86% decrease in CPU utilization for the Intelligent surveillance through distributed camera networks (DCNS) application, up to 57.94% reduction in network utilization, and up to 23.83% improvement in runtime, outperforming other algorithms. As a result, the proposed OFA algorithm enhances the system's efficiency by effectively allocating incoming task requests to the appropriate fog devices, mitigating the challenges posed by resource limitations and contributing to a more optimized IoT ecosystem.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.32604/cmc.2023.042340
dc.identifier.endpage2897en_US
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85181040048
dc.identifier.scopusqualityQ2
dc.identifier.startpage2881en_US
dc.identifier.urihttps://doi.org/10.32604/cmc.2023.042340
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39762
dc.identifier.volume77en_US
dc.identifier.wosWOS:001156830100011
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTech Science Pressen_US
dc.relation.ispartofCMC-Computers Materials & Continuaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInternet of Thingsen_US
dc.subjectCloud Computingen_US
dc.subjectFog Computingen_US
dc.titleUsing Metaheuristic OFA Algorithm for Service Placement in Fog Computingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files