Publication:
Evaluation of the Performance of Transfer Learning Techniques in Classifying Fish Species

dc.authorscopusid59392209200
dc.authorscopusid56589621700
dc.contributor.authorAtac, D.
dc.contributor.authorŞahin, D.O.
dc.date.accessioned2025-12-11T00:32:52Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Atac] Damla, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şahin] Durmuş Ozkan, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractClassification of fish is of great importance for the sustainability of ecosystems and protection of biodiversity. In this study, fish are classified according to their species using deep learning techniques. Convolutional Neural Networks and transfer learning approaches based on these network models are tested on a fish dataset consisting of 9 species and the performance of the models is compared. In addition to Convolutional Neural Networks, transfer learning models used are ResNet, MobileNet, VGG16, Inception and AlexNet models. The highest performance obtained from the experiments, where 80 % of the dataset is divided for training and 20 % for testing, is obtained from the ResNet architecture with 99.94 % according to accuracy and F1-score metrics. When the performances obtained from other models are examined, there are classification results between 92.09 % and 99.67 %. © 2024 IEEE.en_US
dc.identifier.doi10.1109/IDAP64064.2024.10710667
dc.identifier.isbn9798331531492
dc.identifier.scopus2-s2.0-85207870367
dc.identifier.urihttps://doi.org/10.1109/IDAP64064.2024.10710667
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37259
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024 -- 2024-09-21 through 2024-09-22 -- Malatya -- 203423en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectFish Classificationen_US
dc.subjectPattern Recognitionen_US
dc.subjectResNeten_US
dc.subjectTransfer Learningen_US
dc.subjectVGG16en_US
dc.titleEvaluation of the Performance of Transfer Learning Techniques in Classifying Fish Speciesen_US
dc.title.alternativeBalık T Rlerini Sınıflandırmada Transfer Öğrenme Tekniklerinin Başarımlarının Değerlendirilmesien_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files