Publication: Evaluation of the Performance of Transfer Learning Techniques in Classifying Fish Species
| dc.authorscopusid | 59392209200 | |
| dc.authorscopusid | 56589621700 | |
| dc.contributor.author | Atac, D. | |
| dc.contributor.author | Şahin, D.O. | |
| dc.date.accessioned | 2025-12-11T00:32:52Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Atac] Damla, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şahin] Durmuş Ozkan, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | Classification of fish is of great importance for the sustainability of ecosystems and protection of biodiversity. In this study, fish are classified according to their species using deep learning techniques. Convolutional Neural Networks and transfer learning approaches based on these network models are tested on a fish dataset consisting of 9 species and the performance of the models is compared. In addition to Convolutional Neural Networks, transfer learning models used are ResNet, MobileNet, VGG16, Inception and AlexNet models. The highest performance obtained from the experiments, where 80 % of the dataset is divided for training and 20 % for testing, is obtained from the ResNet architecture with 99.94 % according to accuracy and F1-score metrics. When the performances obtained from other models are examined, there are classification results between 92.09 % and 99.67 %. © 2024 IEEE. | en_US |
| dc.identifier.doi | 10.1109/IDAP64064.2024.10710667 | |
| dc.identifier.isbn | 9798331531492 | |
| dc.identifier.scopus | 2-s2.0-85207870367 | |
| dc.identifier.uri | https://doi.org/10.1109/IDAP64064.2024.10710667 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/37259 | |
| dc.language.iso | tr | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024 -- 2024-09-21 through 2024-09-22 -- Malatya -- 203423 | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Fish Classification | en_US |
| dc.subject | Pattern Recognition | en_US |
| dc.subject | ResNet | en_US |
| dc.subject | Transfer Learning | en_US |
| dc.subject | VGG16 | en_US |
| dc.title | Evaluation of the Performance of Transfer Learning Techniques in Classifying Fish Species | en_US |
| dc.title.alternative | Balık T Rlerini Sınıflandırmada Transfer Öğrenme Tekniklerinin Başarımlarının Değerlendirilmesi | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
