Publication:
Prediction of Medical Waste Generation Using SVR, GM (1,1) and ARIMA Models: A Case Study for Megacity Istanbul

dc.authorscopusid57210614739
dc.authorscopusid36238723800
dc.authorscopusid6507093902
dc.authorwosidBulkan, Serol/A-6206-2016
dc.authorwosidElevli, Sermin/Aac-5497-2019
dc.authorwosidCeylan, Zeynep/Aab-6945-2021
dc.contributor.authorCeylan, Zeynep
dc.contributor.authorBulkan, Serol
dc.contributor.authorElevli, Sermin
dc.contributor.authorIDCeylan, Zeynep/0000-0002-3006-9768
dc.date.accessioned2025-12-11T00:53:44Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ceylan, Zeynep] Samsun Univ, Ind Engn Dept, Fac Engn, TR-55420 Samsun, Turkey; [Bulkan, Serol] Marmara Univ, Fac Engn, Ind Engn Dept, TR-34722 Istanbul, Turkey; [Elevli, Sermin] Ondokuz Mayis Univ, Fac Engn, Ind Engn Dept, TR-55139 Samsun, Turkeyen_US
dc.descriptionCeylan, Zeynep/0000-0002-3006-9768;en_US
dc.description.abstractPurpose Estimation of the amount of waste to be generated in the coming years is critical for the evaluation of existing waste treatment service capacities. This study was conducted to evaluate the performance of various mathematical modeling methods to forecast medical waste generation of Istanbul, the largest city in Turkey. Methods Autoregressive Integrated Moving Average (ARIMA), Support Vector Regression (SVR), Grey Modeling (1,1) and Linear Regression (LR) analysis were used to estimate annual medical waste generation from 2018 to 2023. A 23-year data from 1995 to 2017 provided from the Istanbul Metropolitan Municipality's affiliated environmental company ISTAC Company were utilized to examine the forecasting accuracy of methods. Different performance measures such as mean absolute deviation (MAD), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R-2) were used to evaluate the performance of these models. Results ARIMA (0,1,2) model with the lowest RMSE (763.6852), MAD (588.4712), and MAPE (11.7595) values and the highest R-2(0.9888) value showed a superior prediction performance compared to SVR, Grey Modeling (1,1), and LR analysis. The results obtained from the models indicated that the total amount of annual medical waste to be generated will increase from about 26,400 tons in 2017 to 35,600 tons in 2023. Conclusions ARIMA (0,1,2) model developed in this study can help decision-makers to take better measures and develop policies regarding waste management practices in the future.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s40201-020-00495-8
dc.identifier.endpage697en_US
dc.identifier.issn2052-336X
dc.identifier.issue2en_US
dc.identifier.pmid33312594
dc.identifier.scopus2-s2.0-85096526084
dc.identifier.scopusqualityQ2
dc.identifier.startpage687en_US
dc.identifier.urihttps://doi.org/10.1007/s40201-020-00495-8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40042
dc.identifier.volume18en_US
dc.identifier.wosWOS:000541937700001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Environmental Health Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectARIMAen_US
dc.subjectGrey Modeling (1en_US
dc.subject1)en_US
dc.subjectMedical Wasteen_US
dc.subjectPredictionen_US
dc.subjectSVRen_US
dc.subjectGrid Searchen_US
dc.subjectOptimizationen_US
dc.titlePrediction of Medical Waste Generation Using SVR, GM (1,1) and ARIMA Models: A Case Study for Megacity Istanbulen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files