Publication:
Immune Plasma Algorithm: A Novel Meta-Heuristic for Optimization Problems

dc.authorscopusid56294787600
dc.authorscopusid43261041200
dc.authorwosidDemirci, Sercan/W-3371-2017
dc.authorwosidAslan, Selcuk/Aat-9375-2021
dc.authorwosidDemirci, Sercan/Acg-4553-2022
dc.contributor.authorAslan, Selcuk
dc.contributor.authorDemirci, Sercan
dc.contributor.authorIDAslan, Selcuk/0000-0002-9145-239X
dc.contributor.authorIDDemirci, Sercan/0000-0001-6739-7653
dc.date.accessioned2025-12-11T01:15:42Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aslan, Selcuk] Nevsehir Ilaci Bektas Veli Univ, Dept Comp Engn, TR-50300 Nevsehir, Turkey; [Demirci, Sercan] Ondokuz Mayis Univ, Dept Comp Engn, TR-55200 Samsun, Turkeyen_US
dc.descriptionAslan, Selcuk/0000-0002-9145-239X; Demirci, Sercan/0000-0001-6739-7653;en_US
dc.description.abstractThe recent global health crisis also known as the COVID-19 or coronavirus pandemic has attracted the researchers' attentions to a treatment approach called immune plasma or convalescent plasma once more again. The main idea lying behind the immune plasma treatment is transferring the antibody rich part of the blood taken from the patients who are recovered previously to the critical individuals and its efficiency has been proven by successfully using against great influenza of 1918, H1N1 flu, MERS, SARS and Ebola. In this study, we modeled the mentioned treatment approach and introduced a new meta-heuristic called Immune Plasma (IP) algorithm. The performance of the IP algorithm was investigated in detail and then compared with some of the classical and state-of-art meta-heuristics by solving a set of numerical benchmark problems. Moreover, the capabilities of the IP algorithm were also analyzed over complex engineering optimization problems related with the noise minimization of the electro-encephalography signal measurements. The results of the experimental studies showed that the IP algorithm is capable of obtaining better solutions for the vast majority of the test problems compared to other commonly used meta-heuristic algorithms.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1109/ACCESS.2020.3043174
dc.identifier.endpage220245en_US
dc.identifier.issn2169-3536
dc.identifier.pmid34786298
dc.identifier.scopus2-s2.0-85183490564
dc.identifier.scopusqualityQ1
dc.identifier.startpage220227en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2020.3043174
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42444
dc.identifier.volume8en_US
dc.identifier.wosWOS:000600304200001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPlasmasen_US
dc.subjectImmune Systemen_US
dc.subjectOptimizationen_US
dc.subjectCells (Biology)en_US
dc.subjectIP Networksen_US
dc.subjectHeuristic Algorithmsen_US
dc.subjectViruses (Medical)en_US
dc.subjectMeta-Heuristicsen_US
dc.subjectImmune Plasma Algorithmen_US
dc.subjectPlasma Treatmenten_US
dc.titleImmune Plasma Algorithm: A Novel Meta-Heuristic for Optimization Problemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files