Publication:
Using Informative Priors for Handling Missing Data Problem in Cox Regression

dc.authorscopusid56507024600
dc.authorscopusid16508006000
dc.authorscopusid12766595200
dc.contributor.authorAlkan, N.
dc.contributor.authorTerzi, Y.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T13:27:04Z
dc.date.available2020-06-21T13:27:04Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alkan] Nesrin, Department of Statistics, Sinop Üniversitesi, Sinop, Turkey; [Terzi] Yüksel, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThe aim of this study is to determine the effect of informative priors for variables with missing value and to compare Bayesian Cox regression and Cox regression analysis. For this purpose, firstly simulated data sets with different sample size within different missing rate were generated and each of data sets were analysed by Cox regression and Bayesian Cox regression with informative prior. Secondly lung cancer data set as real data set was used for analysis. Consequently, using informative priors for variables with missing value solved the missing data problem. © 2017 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610918.2016.1248568
dc.identifier.endpage7623en_US
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-85018306732
dc.identifier.scopusqualityQ3
dc.identifier.startpage7614en_US
dc.identifier.urihttps://doi.org/10.1080/03610918.2016.1248568
dc.identifier.volume46en_US
dc.identifier.wosWOS:000422900600006
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.relation.journalCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian Cox Regressionen_US
dc.subjectCox Regressionen_US
dc.subjectMissing at Randomen_US
dc.subjectMissing Valueen_US
dc.titleUsing Informative Priors for Handling Missing Data Problem in Cox Regressionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files