Publication:
Evaluation of Deep Sea Discharge Systems Efficiency in the Eastern Black Sea Using Artificial Neural Network: A Case Study for Trabzon, Turkey

dc.authorscopusid57219350313
dc.authorscopusid21743556600
dc.authorscopusid25651919200
dc.authorscopusid55360859700
dc.authorwosidOdabas, Mehmet/Agy-1382-2022
dc.authorwosidArdali, Yuksel/S-2486-2017
dc.authorwosidArdali-Orhan, Yuksel/S-2486-2017
dc.authorwosidAydın Er, Bilge/Jdm-2086-2023
dc.contributor.authorEr, Bilge Aydin
dc.contributor.authorOdabas, Mehmet Serhat
dc.contributor.authorSenyer, Nurettin
dc.contributor.authorArdali, Yuksel
dc.contributor.authorIDAydin Er, Bilge/0000-0002-6546-0089
dc.contributor.authorIDOdabas, Mehmet Serhat/0000-0002-1863-7566
dc.contributor.authorIDArdali, Yuksel/0000-0003-1648-951X
dc.contributor.authorIDŞenyer, Nurettin/0000-0002-2324-9285
dc.date.accessioned2025-12-11T01:33:38Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Er, Bilge Aydin; Ardali, Yuksel] Ondokuz Mayis Univ, Dept Environm Engn, Samsun, Turkey; [Odabas, Mehmet Serhat] Ondokuz Mayis Univ, Fac Agr, Dept Field Crops, Samsun, Turkey; [Senyer, Nurettin] Samsun Univ, Fac Engn, Dept Software Engn, Samsun, Turkeyen_US
dc.descriptionAydin Er, Bilge/0000-0002-6546-0089; Odabas, Mehmet Serhat/0000-0002-1863-7566; Ardali, Yuksel/0000-0003-1648-951X; Şenyer, Nurettin/0000-0002-2324-9285;en_US
dc.description.abstractThe aim of this study is to evaluate the parameters such as pH, dissolved oxygen, temperature, conductivity, salinity, biological oxygen demand (BOD), total suspended solid, ammonia, chlorophyll-a and heavy metals affecting total coliform values in seawater using Artificial Neural Network (ANN) modelling at the Eastern Black Sea coast of Turkey. The results obtained from ANN model were compared with actual total coliform values. The samples were taken from the different points selected along the deep sea discharge systems starting from the diffuser end of three domestic deep sea discharge systems at Turkey's Eastern Black Sea coast. ANN model was developed for estimating the relationship between total coliform and other parameters. The parameters measured in seawater samples were analyzed by using the ANN model for prediction of coliform values. The results showed that neural network model is capable of estimating the sea pollution with a reasonable accuracy.en_US
dc.description.sponsorshipRepublic of Turkey Ministry of Environment and Urbanizationen_US
dc.description.sponsorshipThis study was supported by Republic of Turkey Ministry of Environment and Urbanization with the project name of "Determination of Deep Sea Discharge Criteria" in 2015. The role of the funding is the design of the study and supports the collection samples and analysis.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1590/1678-4324-2022210397
dc.identifier.issn1516-8913
dc.identifier.issn1678-4324
dc.identifier.scopus2-s2.0-85131086773
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1590/1678-4324-2022210397
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44598
dc.identifier.volume65en_US
dc.identifier.wosWOS:000789230000001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherInst Tecnologia Paranaen_US
dc.relation.ispartofBrazilian Archives of Biology and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBlack Seaen_US
dc.subjectDeep Sea Dischargeen_US
dc.subjectTotal Coliformen_US
dc.subjectTrabzonen_US
dc.titleEvaluation of Deep Sea Discharge Systems Efficiency in the Eastern Black Sea Using Artificial Neural Network: A Case Study for Trabzon, Turkeyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files