Publication: Evaluation of Deep Sea Discharge Systems Efficiency in the Eastern Black Sea Using Artificial Neural Network: A Case Study for Trabzon, Turkey
| dc.authorscopusid | 57219350313 | |
| dc.authorscopusid | 21743556600 | |
| dc.authorscopusid | 25651919200 | |
| dc.authorscopusid | 55360859700 | |
| dc.authorwosid | Odabas, Mehmet/Agy-1382-2022 | |
| dc.authorwosid | Ardali, Yuksel/S-2486-2017 | |
| dc.authorwosid | Ardali-Orhan, Yuksel/S-2486-2017 | |
| dc.authorwosid | Aydın Er, Bilge/Jdm-2086-2023 | |
| dc.contributor.author | Er, Bilge Aydin | |
| dc.contributor.author | Odabas, Mehmet Serhat | |
| dc.contributor.author | Senyer, Nurettin | |
| dc.contributor.author | Ardali, Yuksel | |
| dc.contributor.authorID | Aydin Er, Bilge/0000-0002-6546-0089 | |
| dc.contributor.authorID | Odabas, Mehmet Serhat/0000-0002-1863-7566 | |
| dc.contributor.authorID | Ardali, Yuksel/0000-0003-1648-951X | |
| dc.contributor.authorID | Şenyer, Nurettin/0000-0002-2324-9285 | |
| dc.date.accessioned | 2025-12-11T01:33:38Z | |
| dc.date.issued | 2022 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Er, Bilge Aydin; Ardali, Yuksel] Ondokuz Mayis Univ, Dept Environm Engn, Samsun, Turkey; [Odabas, Mehmet Serhat] Ondokuz Mayis Univ, Fac Agr, Dept Field Crops, Samsun, Turkey; [Senyer, Nurettin] Samsun Univ, Fac Engn, Dept Software Engn, Samsun, Turkey | en_US |
| dc.description | Aydin Er, Bilge/0000-0002-6546-0089; Odabas, Mehmet Serhat/0000-0002-1863-7566; Ardali, Yuksel/0000-0003-1648-951X; Şenyer, Nurettin/0000-0002-2324-9285; | en_US |
| dc.description.abstract | The aim of this study is to evaluate the parameters such as pH, dissolved oxygen, temperature, conductivity, salinity, biological oxygen demand (BOD), total suspended solid, ammonia, chlorophyll-a and heavy metals affecting total coliform values in seawater using Artificial Neural Network (ANN) modelling at the Eastern Black Sea coast of Turkey. The results obtained from ANN model were compared with actual total coliform values. The samples were taken from the different points selected along the deep sea discharge systems starting from the diffuser end of three domestic deep sea discharge systems at Turkey's Eastern Black Sea coast. ANN model was developed for estimating the relationship between total coliform and other parameters. The parameters measured in seawater samples were analyzed by using the ANN model for prediction of coliform values. The results showed that neural network model is capable of estimating the sea pollution with a reasonable accuracy. | en_US |
| dc.description.sponsorship | Republic of Turkey Ministry of Environment and Urbanization | en_US |
| dc.description.sponsorship | This study was supported by Republic of Turkey Ministry of Environment and Urbanization with the project name of "Determination of Deep Sea Discharge Criteria" in 2015. The role of the funding is the design of the study and supports the collection samples and analysis. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1590/1678-4324-2022210397 | |
| dc.identifier.issn | 1516-8913 | |
| dc.identifier.issn | 1678-4324 | |
| dc.identifier.scopus | 2-s2.0-85131086773 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1590/1678-4324-2022210397 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/44598 | |
| dc.identifier.volume | 65 | en_US |
| dc.identifier.wos | WOS:000789230000001 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Inst Tecnologia Parana | en_US |
| dc.relation.ispartof | Brazilian Archives of Biology and Technology | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Artificial Neural Network | en_US |
| dc.subject | Black Sea | en_US |
| dc.subject | Deep Sea Discharge | en_US |
| dc.subject | Total Coliform | en_US |
| dc.subject | Trabzon | en_US |
| dc.title | Evaluation of Deep Sea Discharge Systems Efficiency in the Eastern Black Sea Using Artificial Neural Network: A Case Study for Trabzon, Turkey | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
