Publication:
A New Modification of the Least Squares Method with Real Life Applications

dc.contributor.authorKhan, Zahid
dc.contributor.authorKrebs, Katrina Lane
dc.contributor.authorAhmad, Sarfraz
dc.contributor.authorSaghir, Aamir
dc.contributor.authorGumusteki, Serpil
dc.date.accessioned2020-06-21T13:05:04Z
dc.date.available2020-06-21T13:05:04Z
dc.date.issued2019
dc.departmentOMÜen_US
dc.department-temp[Khan, Zahid] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan -- [Krebs, Katrina Lane] Cent Queens Lands CQ Univ, Higher Educ Div, Rockhamton, Australia -- [Ahmad, Sarfraz] Abbottabad UST, Dept Math, Abbottabad, Khyber Pakhtunk, Pakistan -- [Saghir, Aamir] Mirpur Univ Sci & Technol, Dept Math, Mirpur, Azad Kashmir, Pakistan -- [Gumusteki, Serpil] Ondokuz Mayis Univ, Dept Stat, Samsun, Turkey --en_US
dc.description.abstractA new regression M-estimator namely modified least squares (MLS) in the class of M-estimators is presented in this study. The proposed estimator overcomes the non-robustness property associated with traditional approach of the least square (LS) estimator. The effectiveness of the loss function used for proposed estimator has been compared with that of commonly implemented approach of the LS estimator. The influence and weight functions have been derived to analyze the robustness of the proposed estimator against the polluted measurements. Real data examples in statistical applications have been used to analyze the effectiveness of proposed estimator. The empirical results from real applications also confirm that MLS estimator substantially enhances the non-robustness property of the LS estimator.en_US
dc.identifier.endpage14en_US
dc.identifier.issn1016-2526
dc.identifier.issue10en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/11085
dc.identifier.volume51en_US
dc.identifier.wosWOS:000489149500001
dc.language.isoenen_US
dc.publisherUniv Punjab, Dept Mathematicsen_US
dc.relation.journalPunjab University Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLeast Squares Estimatoren_US
dc.subjectGross Errorsen_US
dc.subjectRobust Estimatoren_US
dc.subjectM-Estimatoren_US
dc.titleA New Modification of the Least Squares Method with Real Life Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files