Publication:
Amply Cofinitely Weak Essential Supplemented Modules

dc.authorwosidEryilmaz, Figen/Kba-0157-2024
dc.contributor.authorEryılmaz, Figen
dc.contributor.authorNebiyev, Celil
dc.contributor.authorOkten, Hasan Huseyin
dc.date.accessioned2025-12-11T00:38:00Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eryilmaz, Figen; Nebiyev, Celil] Ondokuz Mayis Univ, Dept Math, Kurupelit Atakum, Samsun, Turkiye; [Okten, Hasan Huseyin] Amasya Univ, Tech Sci Vocat Sch, Amasya, Turkiyeen_US
dc.description.abstractIn this work, amply cofinitely weak essential supplemented (briefly, amply cwe-supplemented) modules are defined and some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of an amply cwe-supplemented module are amply cwe-supplemented. It is also proved that every ii-projective and cwe-supplemented module is amply cwe-supplemented. Let Lambda be any index set and {M lambda}Lambda be a family of projective R-modules. If M lambda is cwesupplemented for every lambda is an element of Lambda, then circle plus M lambda is amply cwe-supplemented. lambda is an element of Lambda Let M be a projective R-module. If M is cwe-supplemented, then every M-generated R-module is amply cwe-supplemented. Let R be any ring. Then every R-module is cwe-supplemented if and only if every R-module is amply cwe-supplemented.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.5831/HMJ.2025.47.3.446
dc.identifier.endpage452en_US
dc.identifier.issn1225-293X
dc.identifier.issn2288-6176
dc.identifier.issue3en_US
dc.identifier.startpage446en_US
dc.identifier.urihttps://doi.org/10.5831/HMJ.2025.47.3.446
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38063
dc.identifier.volume47en_US
dc.identifier.wosWOS:001591273800012
dc.language.isoenen_US
dc.publisherHonam Mathematical Societyen_US
dc.relation.ispartofHonam Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEssential Submodulesen_US
dc.subjectSmall Submodulesen_US
dc.subjectCofinite Submodulesen_US
dc.subjectSupplemented Modulesen_US
dc.titleAmply Cofinitely Weak Essential Supplemented Modulesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files