Publication:
Evaluating the Utility of Large Language Models in Generating Search Strings for Systematic Reviews in Anesthesiology: A Comparative Analysis of Top-Ranked Journals

dc.authorscopusid57200001548
dc.authorscopusid55440112000
dc.authorscopusid57211452071
dc.authorscopusid57222046178
dc.authorscopusid59527259000
dc.authorscopusid57226248917
dc.authorscopusid57993150400
dc.authorwosidTurunc, Esra/Jwa-2584-2024
dc.authorwosidDe Cassai, Alessandro/Abf-8590-2020
dc.authorwosidSella, Nicolò/Aeq-5307-2022
dc.authorwosidDost, Burhan/Aas-4788-2020
dc.authorwosidKarapınar, Emre/Hsc-1448-2023
dc.authorwosidTuran, Engin İhsan/Hnc-1296-2023
dc.contributor.authorDe Cassai, Alessandro
dc.contributor.authorDost, Burhan
dc.contributor.authorKarapinar, Yunus Emre
dc.contributor.authorBeldagli, Muzeyyen
dc.contributor.authorYalin, Mirac Selcen Ozkal
dc.contributor.authorTurunc, Esra
dc.contributor.authorSella, Nicolo
dc.contributor.authorIDDost, Burhan/0000-0002-4562-1172
dc.contributor.authorIDTuran, Engin Ihsan/0000-0001-7447-5074
dc.contributor.authorIDDe Cassai, Alessano/0000-0002-9773-1832
dc.contributor.authorIDKarapinar, Yunus Emre/0000-0001-9996-8756
dc.date.accessioned2025-12-11T01:32:49Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[De Cassai, Alessandro] Univ Padua, Padua Univ Hosp, Dept Med DIMED, Padua, Italy; [De Cassai, Alessandro; Sella, Nicolo] Padua Univ Hosp, Univ Hosp Padova, Anesthesia & Intens Care Unit, Padua, Italy; [Dost, Burhan; Turunc, Esra] Ondokuz Mayis Univ, Fac Med, Dept Anesthesiol & Reanimat, Samsun, Turkiye; [Karapinar, Yunus Emre; Yalin, Mirac Selcen Ozkal] Ataturk Univ, Dept Anesthesiol & Reanimat, Erzurum, Turkiye; [Beldagli, Muzeyyen] Samsun Univ, Dept Anesthesiol & Reanimat, Fac Med, Canik, Turkiye; [Turan, Engin Ihsan] Istanbul Hlth Sci Univ, Dept Anesthesiol, Kanuni Sultan Suleyman Educ & Training Hosp, Istanbul, Turkiyeen_US
dc.descriptionDost, Burhan/0000-0002-4562-1172; Turan, Engin Ihsan/0000-0001-7447-5074; De Cassai, Alessano/0000-0002-9773-1832; Karapinar, Yunus Emre/0000-0001-9996-8756;en_US
dc.description.abstractBackground This study evaluated the effectiveness of large language models (LLMs), specifically ChatGPT 4o and a custom-designed model, Meta-Analysis Librarian, in generating accurate search strings for systematic reviews (SRs) in the field of anesthesiology.Methods We selected 85 SRs from the top 10 anesthesiology journals, according to Web of Science rankings, and extracted reference lists as benchmarks. Using study titles as input, we generated four search strings per SR: three with ChatGPT 4o using general prompts and one with the Meta-Analysis Librarian model, which follows a structured, Population, Intervention, Comparator, Outcome-based approach aligned with Cochrane Handbook standards. Each search string was used to query PubMed, and the retrieved results were compared with the PubMed retrieved studies from the original search string in each SR to assess retrieval accuracy. Statistical analysis compared the performance of each model.Results Original search strings demonstrated superior performance with a 65% (IQR: 43%-81%) retrieval rate, which was statistically different from both LLM groups in PubMed retrieved studies (p=0.001). The Meta-Analysis Librarian achieved a superior median retrieval rate to ChatGPT 4o (median, (IQR); 24% (13%-38%) vs 6% (0%-14%), respectively).Conclusion The findings of this study highlight the significant advantage of using original search strings over LLM-generated search strings in PubMed retrieval studies. The Meta-Analysis Librarian demonstrated notable superiority in retrieval performance compared with ChatGPT 4o. Further research is needed to assess the broader applicability of LLM-generated search strings, especially across multiple databases.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1136/rapm-2024-106231
dc.identifier.issn1098-7339
dc.identifier.issn1532-8651
dc.identifier.pmid39828514
dc.identifier.scopus2-s2.0-85215978467
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1136/rapm-2024-106231
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44454
dc.identifier.wosWOS:001406342100001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherBMJ Publishing Groupen_US
dc.relation.ispartofRegional Anesthesia and Pain Medicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTechnologyen_US
dc.subjectMethodsen_US
dc.subjectNerve Blocken_US
dc.titleEvaluating the Utility of Large Language Models in Generating Search Strings for Systematic Reviews in Anesthesiology: A Comparative Analysis of Top-Ranked Journalsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files