Publication:
The Correct Derivation of the Buckling Equations of the Shear-Deformable FGM Plates for the Extended Kantorovich Method

dc.authorscopusid57216163096
dc.authorscopusid55905441300
dc.authorscopusid57221203396
dc.authorwosidKurgan, Naci/A-9047-2018
dc.authorwosidCan, Nurdogan/Aav-4914-2020
dc.authorwosidHassan, Ahmed/Aau-8603-2020
dc.contributor.authorHassan, Ahmed Hassan Ahmed
dc.contributor.authorKurgan, Naci
dc.contributor.authorCan, Nihat
dc.contributor.authorIDHassan Ahmed Hassan, Ahmed/0000-0002-4880-0184
dc.date.accessioned2025-12-11T01:03:04Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Hassan, Ahmed Hassan Ahmed; Kurgan, Naci; Can, Nihat] Ondokuz Mayis Univ, Engn Fac, Mech Engn Dept, TR-55139 Atakum, Samsun, Turkeyen_US
dc.descriptionHassan Ahmed Hassan, Ahmed/0000-0002-4880-0184;en_US
dc.description.abstractThis article presents the derivation of the elastic buckling equations and boundary conditions of shear-deformable plates in the frame of the extended Kantorovich method (EKM). Surveying the literature shows that those stability equations are often obtained using a wrong derivation by confusing them with the linear equilibrium condition. This work aims at providing the correct derivation that is built on the stability of the equilibrium condition. Buckling equations are derived for three different plate theories, namely, the first-order shear deformation plate theory (FSDT), the refined-FSDT, and the refined plate theory (RPT). This article is the first to implement the EKM based on a refined theory. Also, it is the first time to implement the refined-FSDT in buckling analysis. For the generic FGM plates, buckling equations derived based on the FSDT and refined-FSDT are both found to be simple and contain only the lateral displacements/rotations variations. On the other hand, those of the RPT, have coupled lateral and in-plane displacement variations, even if the physical neutral plate is taken as the reference plane. The considered plate is rectangular and under general in-plane loads. The properties of the plate are continuously varying through its thickness which is assumed to change smoothly with a separable function in the two in-plane directions. The von Karman nonlinearity is considered. The stability equations are derived according to the Trefftz criterion, using the variational calculus. The solution methods of the obtained equations are out of the scope of this article, however, a brief on the solution strategy is presented.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s11012-021-01441-0
dc.identifier.endpage456en_US
dc.identifier.issn0025-6455
dc.identifier.issn1572-9648
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85123068983
dc.identifier.scopusqualityQ2
dc.identifier.startpage441en_US
dc.identifier.urihttps://doi.org/10.1007/s11012-021-01441-0
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40949
dc.identifier.volume57en_US
dc.identifier.wosWOS:000743392600002
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMeccanicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExtended Kantorovich Method (EKM)en_US
dc.subjectTrefftz Stability Criterionen_US
dc.subjectFunctionally Graded Platesen_US
dc.subjectShear Deformable Plate Theoriesen_US
dc.subjectPlate Bucklingen_US
dc.titleThe Correct Derivation of the Buckling Equations of the Shear-Deformable FGM Plates for the Extended Kantorovich Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files