Publication:
Cofinitely ⊕-Supplemented Lattices

dc.authorscopusid57202735203
dc.authorscopusid36142255600
dc.authorwosidTetik Bicer, Cigdem/Lic-5985-2024
dc.contributor.authorBicer, Cigdem
dc.contributor.authorNebiyev, Celil
dc.date.accessioned2025-12-11T00:41:24Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bicer, Cigdem; Nebiyev, Celil] Ondokuz Mayis Univ, Dept Math, TR-55270 Kurupelit, Samsun, Turkeyen_US
dc.description.abstractIn this work, cofinitely circle plus-supplemented and strongly cofinitely circle plus-supplemented lattices are defined and investigated some properties of these lattices. Let L be a lattice and 1 = circle plus a(i) with a(i) is an element of L. If a(i)/0 is cofinitely circle plus-supplemented for every i is an element of I, then L is also cofinitely circle plus-supplemented. Let L be a distributive lattice and 1 = a(1) circle plus a(2) with a(1), a(2) is an element of L. If a(1)/0 and a(2)/0 are strongly cofinitely circle plus-supplemented, then L is also strongly cofinitely circle plus-supplemented. Let L be a lattice. If every cofinite element of L lies above a direct summand in L, then L is cofinitely circle plus-supplemented.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.18514/MMN.2020.2904
dc.identifier.endpage89en_US
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85089544028
dc.identifier.scopusqualityQ3
dc.identifier.startpage81en_US
dc.identifier.urihttps://doi.org/10.18514/MMN.2020.2904
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38449
dc.identifier.volume21en_US
dc.identifier.wosWOS:000541509200005
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherUniversity of Miskolc Institute of Mathematicsen_US
dc.relation.ispartofMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLatticesen_US
dc.subjectCompact Elementsen_US
dc.subjectSmall Elementsen_US
dc.subjectSupplemented Latticesen_US
dc.titleCofinitely ⊕-Supplemented Latticesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files