Publication:
Power-Law Fitness Scaling on Multi-Objective Evolutionary Algorithms: Interpretations of Experimental Results

dc.authorscopusid55904743500
dc.authorscopusid7801457993
dc.contributor.authorErgül, E.U.
dc.contributor.authorEminoǧlu, I.
dc.date.accessioned2020-06-21T12:18:20Z
dc.date.available2020-06-21T12:18:20Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ergül] Engin Ufuk, Department of Electrical and Electronic Engineering, Amasya Üniversitesi, Amasya, Turkey; [Eminoǧlu] Ilyas, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThe effect of power-law fitness scaling method on the convergence and distribution of MOEAs is investigated in a systematic fashion. The proposed method is named as gamma (γ) correction-based fitness scaling (GCFS). What scaling does is that the selection pressure of a population can be efficiently regulated. Hence, fit and unfit individuals may be separated well in fitness-wise before going to the selection mechanism. It is then applied to Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Domination Power of an individual Genetic Algorithm (DOPGA). Firstly, the effectiveness of GCFS is tested by 11 static gamma values (including 0.5, 1, 2, …, 9, 10) on nine well-known benchmarks. Simulated study safely states that SPEA2 and DOPGA may perform generally better with the square (γ = 2) and the cubic (γ = 3) of original fitness value, respectively. Secondly, an adaptive version of GCFS is proposed based on statistical merits (standard deviation and mean of fitness values) and implemented to the selected MOEAs. Generally speaking, fitness scaling significantly improves the convergence properties of MOEAs without extra computational burdens. It is observed that the convergence ability of existing MOEAs with fitness scaling (static or adaptive) can be improved. Simulated results also show that GCFS is only effective when fitness proportional selection methods (such as stochastic universal sampling—SUS) are used. GCFS is not effective when tournament selection is used. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.identifier.doi10.1007/s00500-019-04242-6
dc.identifier.endpage3907en_US
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85069920147
dc.identifier.scopusqualityQ1
dc.identifier.startpage3893en_US
dc.identifier.urihttps://doi.org/10.1007/s00500-019-04242-6
dc.identifier.volume24en_US
dc.identifier.wosWOS:000518603800050
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSoft Computingen_US
dc.relation.journalSoft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDOPGAen_US
dc.subjectEvolutionary Algorithmsen_US
dc.subjectFitness Scalingen_US
dc.subjectGamma Correctionen_US
dc.subjectSPEA2en_US
dc.titlePower-Law Fitness Scaling on Multi-Objective Evolutionary Algorithms: Interpretations of Experimental Resultsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files