Publication:
EEG İşareti Tabanlı Anksiyete Sınıflandırması için Dalgacık Dönüşümü ile Öznitelik Çıkarma

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

Anksiyete, üretkenliği ve yaşam kalitesini etkilediği kadar insan yeteneklerini ve davranışlarını da etkiler. Depresyon ve intiharın ana nedeni olarak kabul edilebilir. Günümüzde klinisyenler anksiyete bozukluklarını teşhis etmek için belirli kriterler kullanılmaktadır. Anksiyete tespitinin karmaşık görevini yerine getiren, invaziv olmayan güvenilir tekniklere ihtiyaç vardır. Bu çalışma, elektroensefalografi (EEG) sinyallerini analiz ederek ikili ve dörtlü sınıfları daha az EEG kanalı ve öznitelik sınıflandırmayı amaçlamıştır. 23 kişinin 14 kanallı EEG sinyalini içeren DASPS veri tabanı kullanılmıştır. EEGLAB kullanarak 14 kanaldan 4 kanal seçilmiştir. Öznitelik çıkarımı için dalgacık dönüşümü kullanılmıştır. MATLAB Classification learner toolbox’taki 8 yöntem ile sınıflandırma yapılmıştır. En yüksek doğrulukta başarımlar ikili sınıflandırmada %67.1 doğrulukta Karar ağaçları yönteminde, dörtlü sınıflandırmada %58.5 doğrulukta destek vektör makinesi ile elde edilmiştir

Description

Citation

WoS Q

Scopus Q

Source

Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Volume

12

Issue

3

Start Page

726

End Page

732

Endorsement

Review

Supplemented By

Referenced By