Publication:
Threshold Class CNNs with Input-Dependent Initial State

dc.authorscopusid15032720400
dc.authorscopusid55937768800
dc.contributor.authorGenç, Ibrahim
dc.contributor.authorGüzeliş, Cuneyt
dc.date.accessioned2025-12-11T01:58:36Z
dc.date.issued1998
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Genç] Ibrahim, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Güzeliş] Cüneyt, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.descriptionIEEEen_US
dc.description.abstractThis paper introduces a special class of Cellular Neural Networks (CNNs) where cells are uncoupled and they are initialized depending on their weighted input level. An uncoupled CNN cell operating in the bipolar output mode defines a discrete-valued Perception whose threshold is determined by the initial condition. CNNs of uncoupled cells, so called linear threshold class CNNs, can be trained by Perception learning rule for searching optimum template values in linearly separable input cases. However, just like Perceptron, conventional linear threshold class CNNs can not perform the classification of linearly nonseparable input sets. To overcome this problem, we choose the initial states of the considered CNNs as piecewise constant functions of the external inputs so that a cell defines a modified Perception having an input-dependent threshold. We show that such linear threshold class CNNs can perform some linearly nonseparable threshold functions. The results obtained by the experiments done on edge detection problem justify our design method.en_US
dc.identifier.endpage135en_US
dc.identifier.isbn1424406404
dc.identifier.isbn981238121X
dc.identifier.isbn9781424406401
dc.identifier.isbn9781424420902
dc.identifier.scopus2-s2.0-0031621441
dc.identifier.scopusqualityN/A
dc.identifier.startpage130en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/47451
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof-- Proceedings of the 1998 5th IEEE International Workshop on Cellular Neural Networks and Their Applications, CNNAen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleThreshold Class CNNs with Input-Dependent Initial Stateen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files