Publication:
Determining the Most Proper Number of Cluster in Fuzzy Clustering by Using Artificial Neural Networks

dc.authorscopusid36450238800
dc.authorscopusid24282075600
dc.authorscopusid23093703600
dc.authorscopusid36614276900
dc.authorscopusid36911404600
dc.contributor.authorAlp Erilli, N.
dc.contributor.authorYolcu, U.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorHakan Aladaǧ, Ĉ.
dc.contributor.authorÖner, Y.
dc.date.accessioned2020-06-21T14:40:58Z
dc.date.available2020-06-21T14:40:58Z
dc.date.issued2011
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alp Erilli] N., Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yolcu] Ufuk, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Hakan Aladaǧ] Ĉ., Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Öner] Yüksel, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn a clustering problem, it would be better to use fuzzy clustering if there was an uncertainty in determining clusters or memberships of some units. Determining the number of cluster has an important role on obtaining sensible and sound results in clustering analysis. In many clustering algorithm, it is firstly need to know number of cluster. However, there is no pre-information about the number of cluster in general. The process of determining the most proper number of cluster is called as cluster validation. In the available fuzzy clustering literature, the most proper number of cluster is determined by utilizing cluster validation indices. When the data contain complexity are being analyzed, cluster validation indices can produce conflictive results. Also, there is no criterion point out the best index. In this study, artificial neural networks are employed to determine the number of cluster. The data is taken as input so the output is membership degree. The proposed method is applied some data and obtained results are compared to those obtained from validation indices like PC, XB, and CE. It is shown that the proposed method produce accurate results. © 2010 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.eswa.2010.08.012
dc.identifier.endpage2252en_US
dc.identifier.issn0957-4174
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-78049529962
dc.identifier.scopusqualityQ1
dc.identifier.startpage2248en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2010.08.012
dc.identifier.volume38en_US
dc.identifier.wosWOS:000284863200105
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectCluster Validation Indexen_US
dc.subjectFuzzy Clusteringen_US
dc.subjectNumber of Clusteren_US
dc.titleDetermining the Most Proper Number of Cluster in Fuzzy Clustering by Using Artificial Neural Networksen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files