Publication:
Variation of USLE-K Soil Erodibility Factor and Its Estimation With Artificial Neural Network Approach in Semi-Humid Environmental Condition

dc.authorscopusid57579342200
dc.authorscopusid58199448800
dc.authorscopusid21743556600
dc.authorscopusid16052385200
dc.authorwosidDengiz, Orhan/Abg-7284-2020
dc.authorwosidSafli, Muhammet Emin/Jtu-0274-2023
dc.authorwosidOdabas, Mehmet/Agy-1382-2022
dc.contributor.authorPacci, Sena
dc.contributor.authorSafli, Muhammet Emin
dc.contributor.authorOdabas, Mehmet Serhat
dc.contributor.authorDengiz, Orhan
dc.contributor.authorIDOdabas, Mehmet Serhat/0000-0002-1863-7566
dc.date.accessioned2025-12-11T01:06:51Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Pacci, Sena; Safli, Muhammet Emin; Dengiz, Orhan] Ondokuz Mayis Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Samsun, Turkiye; [Odabas, Mehmet Serhat] Ondokuz Mayis Univ, Bafra Vocat Sch, Dept Comp Sci, Samsun, Turkiyeen_US
dc.descriptionOdabas, Mehmet Serhat/0000-0002-1863-7566;en_US
dc.description.abstractSoil erosion is the most important soil degradation process threatening arid, semi-arid and semi -humid areas. In this current study, in order to determine the susceptibility of micro basin soils in corum province with semi-humid ecological conditions to erosion, some physico-chemical soil properties such as organic matter, sand, silt, clay, bulk density and hydraulic conductivity factors that closely affect soil erosion (USLE-K factor) were determined. For that aim, soil erodibility values were determined for soil samples taken from surface depth (0-20 cm) of the micro basin. In addition, ANN approach was used to estimate the availability of this parameter in similar ecological conditions and spatial distribution of erosion susceptibility maps for the current micro basin were produced with the results obtained. The neural network's input parameters included organic matter, bulk density, hydraulic conductivity, sand, silt, and clay. The output parameter chosen was erodibility. R2 values of 0.81509 for the test, 0.99 for the training, 0.95 for the validation value, and 0.99 for all values were achieved when taking into account the results of the artificial neural network study.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1590/1678-4324-2023220481
dc.identifier.issn1516-8913
dc.identifier.issn1678-4324
dc.identifier.scopus2-s2.0-85153746876
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1590/1678-4324-2023220481
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41364
dc.identifier.volume66en_US
dc.identifier.wosWOS:000961363100001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherInst Tecnologia Paranaen_US
dc.relation.ispartofBrazilian Archives of Biology and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectErodibilityen_US
dc.subjectSoilen_US
dc.subjectK-Factoren_US
dc.titleVariation of USLE-K Soil Erodibility Factor and Its Estimation With Artificial Neural Network Approach in Semi-Humid Environmental Conditionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files