Publication:
Comparison of the Meta-Heuristic Algorithms for Maximum Likelihood Estimation of the Exponentially Modified Logistic Distribution

dc.authorscopusid54581049600
dc.authorscopusid58959723900
dc.authorwosidKasap, Pelin/Aam-7529-2021
dc.authorwosidFaouri, Adi/Kcx-8959-2024
dc.contributor.authorKasap, Pelin
dc.contributor.authorFaouri, Adi Omaia
dc.contributor.authorIDKasap, Pelin/0000-0002-1106-710X
dc.contributor.authorIDFaouri, Adi/0000-0003-4499-1240
dc.date.accessioned2025-12-11T01:16:38Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kasap, Pelin; Faouri, Adi Omaia] Univ Ondokuz Mayis, Dept Stat, TR-55139 Samsun, Turkiyeen_US
dc.descriptionKasap, Pelin/0000-0002-1106-710X; Faouri, Adi/0000-0003-4499-1240;en_US
dc.description.abstractGeneralized distributions have been studied a lot recently because of their flexibility and reliability in modeling lifetime data. The two-parameter Exponentially-Modified Logistic distribution is a flexible modified distribution that was introduced in 2018. It is regarded as a strong competitor for widely used classical symmetrical and non-symmetrical distributions such as normal, logistic, lognormal, log-logistic, and others. In this study, the unknown parameters of the Exponentially-Modified Logistic distribution are estimated using the maximum likelihood method. Five meta-heuristic algorithms, including the genetic algorithm, particle swarm optimization algorithm, grey wolf optimization algorithm, whale optimization algorithm, and sine cosine algorithm, are applied in order to solve the nonlinear likelihood equations of the study model. The efficiencies of all maximum likelihood estimates for these algorithms are compared via an extensive Monte Carlo simulation study. The performance of the maximum likelihood estimates for the location and scale parameters of the Exponentially-Modified Logistic distribution developed with the genetic algorithm and grey wolf optimization algorithms is the most efficient among others, according to simulation findings. However, the genetic algorithm is two times faster than grey wolf optimization and can be considered better than grey wolf optimization considering the computation time criterion. Six real datasets are analyzed to show the flexibility of this distribution.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/sym16030259
dc.identifier.issn2073-8994
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85188967207
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/sym16030259
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42557
dc.identifier.volume16en_US
dc.identifier.wosWOS:001192801100001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSymmetry-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMaximum Likelihooden_US
dc.subjectExponentially-Modified Logistic Distributionen_US
dc.subjectGenetic Algorithmen_US
dc.subjectGrey Wolf Optimizationen_US
dc.subjectMonte Carlo Simulationen_US
dc.titleComparison of the Meta-Heuristic Algorithms for Maximum Likelihood Estimation of the Exponentially Modified Logistic Distributionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files