Publication:
Two Integrated Conceptual-Wavelet Data-Driven Model Approaches for Daily Rainfall-Runoff Modelling

dc.authorscopusid57207685341
dc.authorscopusid14013469000
dc.authorwosidSezen, Cenk/Aaa-3312-2022
dc.contributor.authorSezen, Cenk
dc.contributor.authorPartal, Turgay
dc.contributor.authorIDSezen, Cenk/0000-0003-1088-9360
dc.date.accessioned2025-12-11T01:09:10Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sezen, Cenk; Partal, Turgay] Ondokuz Mayis Univ, Dept Civil Engn, Samsun, Turkeyen_US
dc.descriptionSezen, Cenk/0000-0003-1088-9360;en_US
dc.description.abstractRainfall-runoff modelling is crucial for enhancing the effectiveness and sustainability of water resources. Conceptual models can have difficulties, such as coping with nonlinearity and needing more data, whereas data-driven models can be deprived of reflecting the physical process of the basin. In this regard, two hybrid model approaches, namely Genie Rural a 4 parametres Journalier (GR4 J)-wavelet-based data-driven models (i.e., wavelet-based genetic algorithm-artificial neural network (WGANN); GR4 J-WGANN 1 and GR4 J-WGANN(2)), were implemented to improve daily rainfall-runoff modelling. The novel GR4 J-WGANN 1 hybrid model includes the outflow (QR) and direct flow (QD) obtained from the GR4 J model, and the GR4 J-WGANN(2) hybrid model includes the soil moisture index (SMI) obtained from the GR4 J model as input data. In hybrid models, wavelet analysis and the Boruta algorithm were implemented to decompose input data and select wavelet components. Four gauging stations in the Eastern Black Sea and Kizilirmak basins in Turkey were used to observe modelling performance. The GR4 J model exhibited poor performance for extreme flow forecasting. The novel GR4 J-WGANN(1) approach performed better than the GR4 J-WGANN(2) model, and the hybrid models improved modelling performance up to 40% compared to the GR4 J model. In this regard, integrated conceptual-wavelet-based data-driven models can be useful for improving the conceptual model performance, especially regarding extreme flow forecasting.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.2166/hydro.2022.171
dc.identifier.endpage975en_US
dc.identifier.issn1464-7141
dc.identifier.issn1465-1734
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85141302493
dc.identifier.scopusqualityQ2
dc.identifier.startpage949en_US
dc.identifier.urihttps://doi.org/10.2166/hydro.2022.171
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41648
dc.identifier.volume24en_US
dc.identifier.wosWOS:000814090200001
dc.language.isoenen_US
dc.publisherIWA Publishingen_US
dc.relation.ispartofJournal of Hydroinformaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBorutaen_US
dc.subjectEastern Black Seaen_US
dc.subjectHybriden_US
dc.subjectKizilirmaken_US
dc.subjectRainfall-Runoffen_US
dc.subjectTurkeyen_US
dc.titleTwo Integrated Conceptual-Wavelet Data-Driven Model Approaches for Daily Rainfall-Runoff Modellingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files