Publication:
Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class

dc.authorscopusid15924309000
dc.authorscopusid44460949100
dc.authorscopusid16303495600
dc.authorscopusid35750924900
dc.authorwosidZaman, Professor Dr. Gul/Abi-7640-2022
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidAlzahrani, Ebraheem/C-3781-2012
dc.contributor.authorZeb, Anwar
dc.contributor.authorAlzahrani, Ebraheem
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorZaman, Gul
dc.contributor.authorIDZaman, Gul/0000-0003-4360-0930
dc.contributor.authorIDIssa, Bushra/0000-0002-0327-7916
dc.contributor.authorIDAlzahrani, Ebraheem/0000-0003-2413-0355
dc.date.accessioned2025-12-11T01:24:50Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Zeb, Anwar] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunk, Pakistan; [Alzahrani, Ebraheem] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55139 Samsun, Turkey; [Zaman, Gul] Univ Malakand, Dept Math, Dir Lower 18000, Khyber Pakhtunk, Pakistanen_US
dc.descriptionZaman, Gul/0000-0003-4360-0930; Issa, Bushra/0000-0002-0327-7916; Alzahrani, Ebraheem/0000-0003-2413-0355en_US
dc.description.abstractThe deadly coronavirus continues to spread across the globe, and mathematical models can be used to show suspected, recovered, and deceased coronavirus patients, as well as how many people have been tested. Researchers still do not know definitively whether surviving a COVID-19 infection means you gain long-lasting immunity and, if so, for how long? In order to understand, we think that this study may lead to better guessing the spread of this pandemic in future. We develop a mathematical model to present the dynamical behavior of COVID-19 infection by incorporating isolation class. First, the formulation of model is proposed; then, positivity of the model is discussed. The local stability and global stability of proposed model are presented, which depended on the basic reproductive. For the numerical solution of the proposed model, the nonstandard finite difference (NSFD) scheme and Runge-Kutta fourth order method are used. Finally, some graphical results are presented. Our findings show that human to human contact is the potential cause of outbreaks of COVID-19. Therefore, isolation of the infected human overall can reduce the risk of future COVID-19 spread.en_US
dc.description.sponsorshipDeanship of Scientific Research at King Abdulaziz University, Jeddahen_US
dc.description.sponsorshipThis project was funded by the Deanship of Scientific Research at King Abdulaziz University, Jeddah. The authors, therefore, gratefully acknowledge DSR for the technical and financial support.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1155/2020/3452402
dc.identifier.issn2314-6133
dc.identifier.issn2314-6141
dc.identifier.pmid32685469
dc.identifier.scopus2-s2.0-85088250547
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/2020/3452402
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43536
dc.identifier.volume2020en_US
dc.identifier.wosWOS:000552799600005
dc.language.isoenen_US
dc.publisherHindawi Ltden_US
dc.relation.ispartofBiomed Research Internationalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleMathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Classen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files