Publication: Ortak Özel Eğrili Regle Yüzey Aileleri
Abstract
Bir doğrunun bir eğri boyunca hareketi ile meydana gelen yüzeye regle yüzey denir. Regle yüzeyler, genelleştirilmiş yüzeylerin bir özel hali olduğundan tanımlı tek bir eğrisi bulunur. Bu eğri de striksiyon eğrisi olarak adlandırılır. Bu çalışmada e küresel gösterge vektörü tarafından oluşturulan yüzeyinin oluşumu sırasında g asimptotik normal vektöründen asimptotik normal yüzeyine ait karakterizasyonlar incelenmiştir. İlk olarak, regle yüzey ailesi, ortak striksiyon eğrisi ile tanımlanmıştır. regle yüzeyinin geodezik Frenet çatısı kullanılarak, bu striksiyon eğrisinin geodezik, eğrilik çizgisi ve asimptotik eğri olması için gerekli koşullar sunulmuştur Son olarak, ortak geodezik, eğrilik çizgisi ve asimptotik eğri ile regle yüzeyleri göstermek için bazı örnekler verilmiştir. Bundan sonraki çalışmalar için önerilerde bulunulmuştur.
The surface formed by the movement of a line along a curve is called a ruled surface. Since ruled surfaces are a special case of generalized surfaces, they have a single defined curve. This curve is also called the stricture curve. In this study, the characterizations of the asymptotic normal surface from the g asymptotic normal vector during the formation of the surface created by the global indicator vector e were examined. First, the ruled surface family is defined by the common stricture curve. Using the geodesic Frenet framework of the ruled surface , the necessary conditions for this striction curve to be a geodesic, curvature line and asymptotic curve are presented. Finally, some examples are given to show ruled surfaces with common geodesic, curvature line and asymptotic curve. Suggestions were made for future studies.
The surface formed by the movement of a line along a curve is called a ruled surface. Since ruled surfaces are a special case of generalized surfaces, they have a single defined curve. This curve is also called the stricture curve. In this study, the characterizations of the asymptotic normal surface from the g asymptotic normal vector during the formation of the surface created by the global indicator vector e were examined. First, the ruled surface family is defined by the common stricture curve. Using the geodesic Frenet framework of the ruled surface , the necessary conditions for this striction curve to be a geodesic, curvature line and asymptotic curve are presented. Finally, some examples are given to show ruled surfaces with common geodesic, curvature line and asymptotic curve. Suggestions were made for future studies.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
52
