Publication:
A Fractional-Order Multi-Delayed Bicyclic Crossed Neural Network: Stability, Bifurcation, and Numerical Solution

dc.authorscopusid57217132593
dc.authorscopusid56678696600
dc.authorscopusid16303495600
dc.authorwosidPark, Ju H./J-8796-2012
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorLee, Tae H.
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.contributor.authorIDLee, Tae H/0000-0003-3953-6913
dc.date.accessioned2025-12-11T01:19:28Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra; Lee, Tae H.] Jeonbuk Natl Univ, Div Elect Engn, Jeonju Si 54896, South Korea; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Samsun, Turkiyeen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837; Lee, Tae H/0000-0003-3953-6913en_US
dc.description.abstractIn this paper, we propose a fractional-order bicyclic crossed neural network (NN) with multiple time delays consisting of two sharing neurons between rings. The given fractional-order NN is defined in terms of the Caputo fractional derivatives. We prove boundedness and the existence of a unique solution for the proposed NN. We do the stability and the onset of Hopf bifurcation analyses by converting the proposed multiple-delayed NN into a single-delay NN. Later, we numerically solve the proposed NN with the help of the L1 predictor-corrector algorithm and justify the theoretical results with graphical simulations. We explore that the time delay and the order of the derivative both influence the stability and bifurcation of the fractional-order NN. The proposed fractional-order NN is a unique multi-delayed bicyclic crossover NN that has two sharing neurons between rings. Such ring structure appropriately mimics the information transmission process within intricate NNs.en_US
dc.description.sponsorshipNational Research Foundation of Korea (NRF) - Korea government (MSIT) [RS-202300210401]en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-202300210401) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.neunet.2025.107436
dc.identifier.issn0893-6080
dc.identifier.issn1879-2782
dc.identifier.pmid40245488
dc.identifier.scopus2-s2.0-105002565508
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2025.107436
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42869
dc.identifier.volume188en_US
dc.identifier.wosWOS:001473760500001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofNeural Networksen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional-Order Neural Networksen_US
dc.subjectMultiple Delaysen_US
dc.subjectBicyclic Crossed Structureen_US
dc.subjectCaputo Fractional Derivativeen_US
dc.subjectHopf Bifurcationen_US
dc.subjectStabilityen_US
dc.titleA Fractional-Order Multi-Delayed Bicyclic Crossed Neural Network: Stability, Bifurcation, and Numerical Solutionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files