Publication:
Probabilistic Power Flow Analysis Using MATLAB Graphical User Interface (GUI)

dc.authorscopusid35409580000
dc.authorscopusid22433630600
dc.authorscopusid57188851958
dc.authorwosidKurt, Ünal/A-1330-2014
dc.contributor.authorKurt, Unal
dc.contributor.authorOzgonenel, Okan
dc.contributor.authorAyvaz, Birsen Boylu
dc.contributor.authorIDKurt, Ünal/0000-0002-8889-8681
dc.date.accessioned2025-12-11T01:05:08Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kurt, Unal; Ayvaz, Birsen Boylu] Amasya Univ, Fac Engn, Elect & Elect Engn Dept, TR-05100 Amasya, Turkey; [Ozgonenel, Okan] Ondokuz Mayis Univ, Elect & Elect Engn Dept, Fac Engn, TR-55200 Samsun, Turkeyen_US
dc.descriptionKurt, Ünal/0000-0002-8889-8681en_US
dc.description.abstractIn today's power systems, there are renewable energy sources such as wind energy systems and solar energy systems. Renewable energy sources cause extra power fluctuation in the system. Rising of the fluctuation incresas the uncertainties of the power system. Since deterministic methods that do not contain uncertainty because of using certain fixed values instead of probabilistic values, these methods can not give reliable results under uncertainties. Therefore, statistical load flow, also known as probabilistic load flow, has taken its place as a new title in the literature in order to overcome the deficiencies of conventional load flow methods which do not contain uncertainty. In this study, a comparative analysis of Monte Carlo simulation with Latin Hypercube sampling method and Unscented transformation methods are presented. These methods are compared with the results obtained from the classical Monte Carlo simulation method. IEEE 14 and 30 bus test systems and Ondokuz Mayis University campus distribution system were chosed as a test system for the application of the proposed methods. The results show that Unscented transformation method is faster and more reliable than the other two methods.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s42835-021-00932-0
dc.identifier.endpage943en_US
dc.identifier.issn1975-0102
dc.identifier.issn2093-7423
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85118430433
dc.identifier.scopusqualityQ2
dc.identifier.startpage929en_US
dc.identifier.urihttps://doi.org/10.1007/s42835-021-00932-0
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41229
dc.identifier.volume17en_US
dc.identifier.wosWOS:000713962000005
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringer Singapore Pte Ltden_US
dc.relation.ispartofJournal of Electrical Engineering & Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStatistical Load Flow (SLF)en_US
dc.subjectProbabilistic Load Flow (PLF)en_US
dc.subjectMonte Carlo Simulation (MCS)en_US
dc.subjectLatin Hypercube Sampling (LHS)en_US
dc.subjectUnscented Transformation (UT)en_US
dc.titleProbabilistic Power Flow Analysis Using MATLAB Graphical User Interface (GUI)en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files