Publication:
Automated Abnormality Classification of Chest Radiographs Using MobileNetV2

dc.authorwosidAkpinar, Kubra Nur/Oui-5793-2025
dc.authorwosidGenc, Secil/Aah-6637-2021
dc.authorwosidAkpınar, Kübra Nur/Aal-9252-2020
dc.contributor.authorGenc, Secil
dc.contributor.authorAkpinar, Kubra Nur
dc.contributor.authorKaragol, Serap
dc.contributor.authorIDGenç, Seçi̇l/0000-0002-3754-0209
dc.contributor.authorIDAkpınar, Kübra Nur/0000-0003-4579-4070
dc.date.accessioned2025-12-11T01:13:28Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Genc, Secil; Akpinar, Kubra Nur; Karagol, Serap] Ondokuz Mayis Univ, Elect Elect Engn, Samsun, Turkeyen_US
dc.descriptionGenç, Seçi̇l/0000-0002-3754-0209; Akpınar, Kübra Nur/0000-0003-4579-4070en_US
dc.description.abstractChest X-ray is one of the most common screening and diagnostic radiological examinations for the detection of many lung diseases. Undoubtedly, evaluation of patient data and expert decisions are the most important factors in diagnosis. However, expert systems for classification and different artificial intelligence techniques also help experts a lot. Deep Learning, which has been widely used recently, is an advanced machine learning technique with many intangible layers that communicate with each other. In this study, chest disease was diagnosed using MobileNetV2, a popular deep learning network. X-ray image quality was tried to be improved by applying a three-steps pre-process including crop, histogram equalization and contrast-limited adaptive histogram equalization to data sets. The best result performance was given using ROC curve. Chest disease was detected by AC 89.95% and AUC 92.60 % using pre-processed ChestX-ray14 data sets.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/hora49412.2020.9152607
dc.identifier.endpage679en_US
dc.identifier.isbn9781728193526
dc.identifier.scopusqualityN/A
dc.identifier.startpage676en_US
dc.identifier.urihttps://doi.org/10.1109/hora49412.2020.9152607
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42124
dc.identifier.wosWOS:000644404300114
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) -- Jun 26-27, 2020 -- Turkeyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectMachine Learningen_US
dc.subjectImage Processingen_US
dc.subjectMobileNetV2en_US
dc.titleAutomated Abnormality Classification of Chest Radiographs Using MobileNetV2en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files