Publication:
Water Quality Index Forecast Using Artificial Neural Network Techniques Optimized With Different Metaheuristic Algorithms

dc.authorscopusid58143629400
dc.authorscopusid56209491600
dc.authorscopusid57201458677
dc.authorscopusid57777949700
dc.authorwosidBakan, Gülfem/E-8759-2014
dc.authorwosidZubaidi, Salah/Aab-1630-2019
dc.contributor.authorZamili, Hasanain
dc.contributor.authorBakan, Gulfem
dc.contributor.authorZubaidi, Salah L.
dc.contributor.authorAlawsi, Mustafa A.
dc.contributor.authorIDZamili, Hasanain/0000-0002-1261-8591
dc.date.accessioned2025-12-11T01:12:44Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Zamili, Hasanain; Bakan, Gulfem] Ondokuz Mayis Univ, Dept Environm Engn, TR-55139 Samsun, Turkiye; [Zubaidi, Salah L.] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq; [Zubaidi, Salah L.] Wasit Univ, Dept Civil Engn, Wasit 52001, Iraq; [Alawsi, Mustafa A.] Middle Tech Univ, Kut Tech Inst, Dept Bldg & Construct Tech, Baghdad, Iraqen_US
dc.descriptionZamili, Hasanain/0000-0002-1261-8591;en_US
dc.description.abstractAn accurate water quality index (WQI) forecast is essential for freshwater resources management due to providing early warnings to prevent environmental disasters. This research provides a novel procedure to simulate monthly WQI considering water quality parameters and rainfall. The methodology includes data pre-processing and an artificial neural network (ANN) model integrated with the constraint coefficient-based particle swarm optimization and chaotic gravitational search algorithm (CPSOCGSA). The CPSOCGSA technique was compared with the marine predator's optimization algorithm (MPA) and particle swarm optimization (PSO) to increase the model's reliability. The Yesilirmak River data from 1995 to 2014 was considered to build and inspect the suggested strategy. The outcomes show the pre-processing data methods enhance the quality of the original dataset and identify the optimal predictors' scenario. The CPSOCGSA-ANN algorithm delivers the best performance compared with MPA-ANN and PSO-ANN considering multiple statistical indicators. Overall, the methodology shows good performance with R-2 = 0.965, MAE = 0.01627, and RMSE = 0.0187.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1007/s40808-023-01750-1
dc.identifier.endpage4333en_US
dc.identifier.issn2363-6203
dc.identifier.issn2363-6211
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85150162145
dc.identifier.scopusqualityQ1
dc.identifier.startpage4323en_US
dc.identifier.urihttps://doi.org/10.1007/s40808-023-01750-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42050
dc.identifier.volume9en_US
dc.identifier.wosWOS:000952255000001
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofModeling Earth Systems and Environmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Preprocessingen_US
dc.subjectMetaheuristic Algorithmen_US
dc.subjectWater Quality Index Predictionen_US
dc.subjectArtificial Neural Networken_US
dc.titleWater Quality Index Forecast Using Artificial Neural Network Techniques Optimized With Different Metaheuristic Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files