Publication: Water Quality Index Forecast Using Artificial Neural Network Techniques Optimized With Different Metaheuristic Algorithms
| dc.authorscopusid | 58143629400 | |
| dc.authorscopusid | 56209491600 | |
| dc.authorscopusid | 57201458677 | |
| dc.authorscopusid | 57777949700 | |
| dc.authorwosid | Bakan, Gülfem/E-8759-2014 | |
| dc.authorwosid | Zubaidi, Salah/Aab-1630-2019 | |
| dc.contributor.author | Zamili, Hasanain | |
| dc.contributor.author | Bakan, Gulfem | |
| dc.contributor.author | Zubaidi, Salah L. | |
| dc.contributor.author | Alawsi, Mustafa A. | |
| dc.contributor.authorID | Zamili, Hasanain/0000-0002-1261-8591 | |
| dc.date.accessioned | 2025-12-11T01:12:44Z | |
| dc.date.issued | 2023 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Zamili, Hasanain; Bakan, Gulfem] Ondokuz Mayis Univ, Dept Environm Engn, TR-55139 Samsun, Turkiye; [Zubaidi, Salah L.] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq; [Zubaidi, Salah L.] Wasit Univ, Dept Civil Engn, Wasit 52001, Iraq; [Alawsi, Mustafa A.] Middle Tech Univ, Kut Tech Inst, Dept Bldg & Construct Tech, Baghdad, Iraq | en_US |
| dc.description | Zamili, Hasanain/0000-0002-1261-8591; | en_US |
| dc.description.abstract | An accurate water quality index (WQI) forecast is essential for freshwater resources management due to providing early warnings to prevent environmental disasters. This research provides a novel procedure to simulate monthly WQI considering water quality parameters and rainfall. The methodology includes data pre-processing and an artificial neural network (ANN) model integrated with the constraint coefficient-based particle swarm optimization and chaotic gravitational search algorithm (CPSOCGSA). The CPSOCGSA technique was compared with the marine predator's optimization algorithm (MPA) and particle swarm optimization (PSO) to increase the model's reliability. The Yesilirmak River data from 1995 to 2014 was considered to build and inspect the suggested strategy. The outcomes show the pre-processing data methods enhance the quality of the original dataset and identify the optimal predictors' scenario. The CPSOCGSA-ANN algorithm delivers the best performance compared with MPA-ANN and PSO-ANN considering multiple statistical indicators. Overall, the methodology shows good performance with R-2 = 0.965, MAE = 0.01627, and RMSE = 0.0187. | en_US |
| dc.description.woscitationindex | Emerging Sources Citation Index | |
| dc.identifier.doi | 10.1007/s40808-023-01750-1 | |
| dc.identifier.endpage | 4333 | en_US |
| dc.identifier.issn | 2363-6203 | |
| dc.identifier.issn | 2363-6211 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.scopus | 2-s2.0-85150162145 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 4323 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/s40808-023-01750-1 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/42050 | |
| dc.identifier.volume | 9 | en_US |
| dc.identifier.wos | WOS:000952255000001 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Heidelberg | en_US |
| dc.relation.ispartof | Modeling Earth Systems and Environment | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Data Preprocessing | en_US |
| dc.subject | Metaheuristic Algorithm | en_US |
| dc.subject | Water Quality Index Prediction | en_US |
| dc.subject | Artificial Neural Network | en_US |
| dc.title | Water Quality Index Forecast Using Artificial Neural Network Techniques Optimized With Different Metaheuristic Algorithms | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
