Publication:
Silage Maize Yield Estimation by Using PlanetScope, Sentinel-2A and Landsat 8 OLI Satellite Images

dc.authorscopusid57204446671
dc.authorscopusid24344113900
dc.authorscopusid58042661200
dc.authorwosidCetin Taner, Sakine/Juv-5054-2023
dc.authorwosidTunca, Emre/Iqt-3077-2023
dc.authorwosidKoksal, Eyup/Ixd-8732-2023
dc.contributor.authorTunca, Emre
dc.contributor.authorKoksal, Eyup Selim
dc.contributor.authorTaner, Sakine cetin
dc.contributor.authorIDTunca, Emre/0000-0001-6869-9602
dc.date.accessioned2025-12-11T01:10:28Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tunca, Emre; Koksal, Eyup Selim; Taner, Sakine cetin] Ondokuz Mayis Univ, Agr Fac, Dept Agr Struct & Irrigat, Samsun, Turkiyeen_US
dc.descriptionTunca, Emre/0000-0001-6869-9602;en_US
dc.description.abstractThe early prediction of crop yield is a vital component of agricultural planning and policy decision-making. In order to achieve this, many countries utilize conventional techniques such as crop growth models that simulate agricultural applications. Alternatively, some approaches involve the spatio-temporal monitoring of vegetation conditions. In this study, we aimed to evaluate the potential for silage maize yield estimation using vegetation indices, including the Normalized Difference Vegetation Index (NDVI), Soil-Adjustment Vegetation Index (SAVI), and Simple Ratio (SR), through the use of PlanetScope, Sentinel-2A, and Landsat 8 OLI satellite images. Linear regression was employed to examine the relationship between silage maize yield and calculated spectral vegetation indices (SVI) at various dates. The results revealed significant correlations between remotely sensed SVI and silage maize yield values for four large-scale plots. Specifically, it was found that silage maize yield could be estimated most accurately using SR between Days After Sowing (DAS) 73 and DAS 76 at a p-value of <0.01. Additionally, yield could be successfully estimated using these three satellite images and indices between DAS 33 and DAS 69 at the p<0.05 level.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1016/j.atech.2022.100165
dc.identifier.issn2772-3755
dc.identifier.scopus2-s2.0-85145576484
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1016/j.atech.2022.100165
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41826
dc.identifier.volume4en_US
dc.identifier.wosWOS:001134564800001
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSmart Agricultural Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLandsaten_US
dc.subjectMaizeen_US
dc.subjectPlanetScopeen_US
dc.subjectRemote Sensingen_US
dc.subjectSentinel 2en_US
dc.subjectYield Estimationen_US
dc.titleSilage Maize Yield Estimation by Using PlanetScope, Sentinel-2A and Landsat 8 OLI Satellite Imagesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files