Publication: Kompleks Düzlemde 1-Parametreli Hareketler ve Holditch Teoremi
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
KOMPLEKS DÜZLEMDE 1-PARAMETRELI HAREKETLER VE HOLDITCH TEOREMİ ÖZET Bu çalışma temelde beş bölümden oluşmaktadır. Giriş bölümünde konunun ele alınma sebebi, ikinci bölümde ise konuya temel olan çalışmalar ortaya konuldu. Genel Bilgiler bölümünde ise hareketler ile ilgili temel kavramlara yer verildi. Materyal ve Metot bölümünde, 1 -parametreli düzlemsel hareketler ve 1 -parametreli düzlemsel homotetik hareketler altında hızlar ve ivmeler incelendi. Daha sonra kapalı hareketler altında bir noktanın Steiner alan formülü verildi ve Holditch teoremi ifade ve ispat edildi. Bundan başka kompleks düzlemde 1 -parametreli kapalı hareketlerde yörünge alan formülü ve karışık alan formülü verildi. Bu karışık alan formülü yardımıyla Holditch teoremi tekrar ispat edildi. Çalışmamızın orijinal kısmını oluşturan Bulgular bölümünde, kompleks düzlemde 1 -parametreli hareketler ve 1 -parametreli homotetik hareketler altında hızlar ve ivmeler yeniden incelenerek bunların kompleks düzlemdeki ifadeleri elde edildi. Daha sonra, kompleks düzlemde 1 -parametreli kapalı homotetik hareketlerde bir noktanın yörünge alan formülü ve karışık alan formülü elde edildi. Bu karışık alan formülü yardımıyla kompleks düzlemde 1 -parametreli kapalı homotetik hareketler altında Holditch teoremi ispat edildi. Anahtar Kelimeler: Homotetik Hareketler, Steiner alan formülü, Karışık alan formülü, Holditch teoremi
ııı 1-PARAMETER MOTIONS AND HOLDITCH THEOREM ON THE COMPLEX PLANE ABSTRACT This study consists of five basic chapters. In introduction, the reason why this study is taken into consideration is given and in the second chapter the basic studies have been presented. In the third chapter, fundamental concepts about motions are given. In the fourth chapter, velocities and accelerations are examined under the 1- parameter motions and 1 -parameter homothetic motions. Then, Steiner area formula of a point under the closed motions is given and the Holditch theorem is expressed and proved. Moreover, the orbit area formula and the mixture area formula are expressed under the 1 -parameter motions in the complex plane. The Holditch theorem is proved again by means of this mixture area formula. The fifth chapter is the original part of our study. In this chapter, velocities and accelerations under the 1 -parameter motions and 1 -parameter homothetic motions in the complex plane are examined and the complex expressions of these velocities and accelerations are obtained. Then, the orbit area formula of a point and the mixture area formula are obtained under the 1 -parameter closed homothetic motions in the complex plane. Finally, the Holditch theorem is proved by means of this mixture area formula under the closed homothetic motions. Key Words: Homothetic Motions, Steiner area formula, Mixture area formula, Holditch theorem
ııı 1-PARAMETER MOTIONS AND HOLDITCH THEOREM ON THE COMPLEX PLANE ABSTRACT This study consists of five basic chapters. In introduction, the reason why this study is taken into consideration is given and in the second chapter the basic studies have been presented. In the third chapter, fundamental concepts about motions are given. In the fourth chapter, velocities and accelerations are examined under the 1- parameter motions and 1 -parameter homothetic motions. Then, Steiner area formula of a point under the closed motions is given and the Holditch theorem is expressed and proved. Moreover, the orbit area formula and the mixture area formula are expressed under the 1 -parameter motions in the complex plane. The Holditch theorem is proved again by means of this mixture area formula. The fifth chapter is the original part of our study. In this chapter, velocities and accelerations under the 1 -parameter motions and 1 -parameter homothetic motions in the complex plane are examined and the complex expressions of these velocities and accelerations are obtained. Then, the orbit area formula of a point and the mixture area formula are obtained under the 1 -parameter closed homothetic motions in the complex plane. Finally, the Holditch theorem is proved by means of this mixture area formula under the closed homothetic motions. Key Words: Homothetic Motions, Steiner area formula, Mixture area formula, Holditch theorem
Description
Tez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 2000
Libra Kayıt No: 35621
Libra Kayıt No: 35621
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
66
