Publication: Dual Sonlu Zayıf Radikal Tümlenmiş Modüller
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
Bu tezde dual sonlu zayıf tümlenmiş modül kavramından yola çıkılarak dual sonlu zayıf radikal tümlenmiş modül kavramı tanımlandı ve bu modüllerin bazı özellikleri incelendi. Dual sonlu radikal tümlenmiş her modülün dual sonlu zayıf radikal tümlenmiş olduğu açıktır. Tersine eğer M R-modülü sonlu üretilmiş her K alt modülü için Rad(K)=K?Rad(M) koşulunu sağlayan dual sonlu zayıf radikal tümlenmiş modül ise, M nin dual sonlu radikal tümlenmiş olduğu gösterildi. Dual sonlu zayıf radikal tümlenmiş bir modülün her bölüm modülü dual sonlu zayıf radikal tümlenmiş olmasına rağmen tersi doğru değildir. Ancak M nin N?Rad(M) koşulunu sağlayan N alt modülü için M/N dual sonlu zayıf radikal tümlenmiş ise, M nin dual sonlu zayıf radikal tümlenmiş olduğu ve yine N, M nin lineer kompakt bir alt modülü olmak üzere M/N dual sonlu zayıf radikal tümlenmiş ise, M nin dual sonlu zayıf radikal tümlenmiş olduğu gösterildi. Ayrıca keyfi sayıda dual sonlu zayıf radikal tümlenmiş modülün toplamının dual sonlu zayıf radikal tümlenmiş olduğu ve bu modüllerin sınıfının genişlemeler altında kapalı olduğu gösterildi. İkinci bölümde, dual sonlu zayıf radikal tümlenmiş modüllerin Dedekind bölgeleri ve noetherian halkalar üzerindeki yapısı araştırıldı. Bir R tamlık bölgesinin h-yarı lokal olması için gerek ve yeter koşulun her torsion R-modülün dual sonlu zayıf radikal tümlenmiş olması gerektiği gösterildi. Üçüncü bölümde, tamamen dual sonlu zayıf radikal tümlenmiş modül kavramı tanımlandı. Tamamen dual sonlu zayıf radikal tümlenmiş bir modülün her bölüm modülünün tamamen dual sonlu zayıf radikal tümlenmiş olduğu ve bölüm modülü tamamen dual sonlu zayıf radikal tümlenmiş iken modülün kendisinin bazı koşullar altında tamamen dual sonlu zayıf radikal tümlenmiş olduğu ispatlandı. Anahtar Kelimeler: Dual Sonlu Alt Modül; Radikal; Tümleyen; Zayıf Tümleyen; Zayıf Rad-Tümlenmiş Modül; Noetherian Halka; Dedekind Bölgesi; h-Yarı Lokal Bölge.
In this thesis, based on cofinitely weak supplemented module concept, cofinitely weak radical supplemented module concept is defined and some properties of these modules are examined. It is obvious that every cofinitely radical supplemented module is cofinitely weak radical supplemented module. Conversely, it is showed that if M is a cofinitely weak radical supplemented module such that every finitely generated submodule K of M with Rad(K)=K?Rad(M) then M is cofinitely radical supplemented. Although every quotient module of a cofinitely weak radical supplemented module is a cofinitely weak radical supplemented module, the converse is not true. However, if M/N is cofinitely weak radical supplemented with a submodule N satisfying N?Rad(M), then M is cofinitely weak radical supplemented and again if M/N is cofinitely weak radical supplemented for a linear compact submodule N, then M is cofinitely weak radical supplemented. Nevertheless, it is showed that arbitrary sum of cofinitely weak radical supplemented modules is cofinitely weak radical supplemented and the class of these modules is closed under extensions. In the second section, the structure of cofinitely weak radical supplemented modules over Dedekind domain and noetherian ring is investigated. It is showed that an integral domain R is h-semilocal if and only if every torsion R-module is cofinitely weak radical supplemented. In the third section, totally cofinitely weak radical supplemented module concept is defined. It is proved that every quotient module of a totally cofinitely weak radical supplemented module is totally cofinitely weak radical supplemented and the module is totally cofinitely weak radical supplemented module itself under some conditions when the quotient module is totally cofinitely weak radical supplemented. Key Words: Cofinite Submodule; Radical, Supplement; Weak Supplement; Weakly Rad-Supplemented Module; Noetherian Ring; Dedekind Domain; h-Semilocal Domain.
In this thesis, based on cofinitely weak supplemented module concept, cofinitely weak radical supplemented module concept is defined and some properties of these modules are examined. It is obvious that every cofinitely radical supplemented module is cofinitely weak radical supplemented module. Conversely, it is showed that if M is a cofinitely weak radical supplemented module such that every finitely generated submodule K of M with Rad(K)=K?Rad(M) then M is cofinitely radical supplemented. Although every quotient module of a cofinitely weak radical supplemented module is a cofinitely weak radical supplemented module, the converse is not true. However, if M/N is cofinitely weak radical supplemented with a submodule N satisfying N?Rad(M), then M is cofinitely weak radical supplemented and again if M/N is cofinitely weak radical supplemented for a linear compact submodule N, then M is cofinitely weak radical supplemented. Nevertheless, it is showed that arbitrary sum of cofinitely weak radical supplemented modules is cofinitely weak radical supplemented and the class of these modules is closed under extensions. In the second section, the structure of cofinitely weak radical supplemented modules over Dedekind domain and noetherian ring is investigated. It is showed that an integral domain R is h-semilocal if and only if every torsion R-module is cofinitely weak radical supplemented. In the third section, totally cofinitely weak radical supplemented module concept is defined. It is proved that every quotient module of a totally cofinitely weak radical supplemented module is totally cofinitely weak radical supplemented and the module is totally cofinitely weak radical supplemented module itself under some conditions when the quotient module is totally cofinitely weak radical supplemented. Key Words: Cofinite Submodule; Radical, Supplement; Weak Supplement; Weakly Rad-Supplemented Module; Noetherian Ring; Dedekind Domain; h-Semilocal Domain.
Description
Tez (doktora) -- Ondokuz Mayıs Üniversitesi, 2013
Libra Kayıt No: 66147
Libra Kayıt No: 66147
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
89
