Publication:
Modules That Have a Weak delta-Supplement in Every Cofinite Extension

dc.contributor.authorSozen, Esra Ozturk
dc.contributor.authorEren, Senol
dc.date.accessioned2020-06-21T13:17:34Z
dc.date.available2020-06-21T13:17:34Z
dc.date.issued2018
dc.departmentOMÜen_US
dc.department-temp[Sozen, Esra Ozturk] Ondokuz Mayis Univ, Fac Sci & Arts, Dept Math, Samsun, Turkey --en_US
dc.description.abstractIn this paper, we study on modules that have a weak (ample) delta-supplement in every extension which are adapted Zoschinger's modules with the properties (E) and (EE). It is shown that: (1) Direct summands of modules with the property delta-(CWE) have the property delta-(CWE); (2) For a module M, if every submodule of M has the property delta-(CWE) then so does M; (3) For a ring R, R is delta-semilocal iff every R-module has the property delta-(CWE); (4) Every factor module of a finitely generated module that has the property delta-(CWE) also has the property delta-(CWE)under a special condition; (5) Let M be a module and L be a submodule of M such that L <<(delta) M. If the factor module M/L has the property delta-(CWE), then so does M; (6) On a semisimple module the concepts of modules that have the property delta-(CE) and delta-(CWE) coincide with each other.en_US
dc.identifier.endpage138en_US
dc.identifier.issn1844-9581
dc.identifier.issue1en_US
dc.identifier.startpage133en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12021
dc.identifier.wosWOS:000430226600009
dc.language.isoenen_US
dc.publisherEditura Bibliotheca-Bibliotheca Publ Houseen_US
dc.relation.journalJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCofinite Extensionen_US
dc.subjectDelta-Supplementen_US
dc.subjectWeak Delta-Supplementen_US
dc.subjectDelta-Semilocal Ringen_US
dc.titleModules That Have a Weak delta-Supplement in Every Cofinite Extensionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files