Publication:
Short Term Load Forecasting Based on ARIMA and ANN Approaches

dc.authorscopusid58081067900
dc.authorscopusid57189095244
dc.authorscopusid55893389200
dc.authorscopusid22433630600
dc.contributor.authorTarmanini, Chafak
dc.contributor.authorSarma, Nur
dc.contributor.authorGezegin, Cenk
dc.contributor.authorOzgonenel, Okan
dc.contributor.authorIDTermanini, Shafak/0000-0002-7926-0977
dc.date.accessioned2025-12-11T01:10:01Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tarmanini, Chafak; Gezegin, Cenk; Ozgonenel, Okan] Ondokuz Mayis Univ, Fac Engn, Elect Elect Engn, TR-55200 Samsun, Turkiye; [Sarma, Nur] Univ Durham, Fac Engn, Elect & Elect Engn Dept, Durham DH1 3LE, Englanden_US
dc.descriptionTermanini, Shafak/0000-0002-7926-0977en_US
dc.description.abstractForecasting electricity demand requires accurate and sustainable data acquisition systems which rely on smart grid systems. To predict the demand expected by the grid, many smart meters are required to collect sufficient data. However, the problem is multi-dimensional and simple power aggregation techniques may fail to capture the relational similarities between the various types of users. Therefore, accurate forecasting of energy demand plays a key role in planning, setting up, and implementing networks for the renewable energy systems, and continuously providing energy to consumers. This is also a key element for planning the requirement for storage devices and their storage capacity. Additionally, errors in hour-to-hour forecasting may cause considerable economic and consumer losses. This paper aims to address the knowledge gap in techniques based on machine learning (ML) for predicting load by using two forecasting methods: Auto Regressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN); and compares the performance of both methods using Mean Absolute Percentage Error (MAPE). The study is based on daily real load electricity data for 709 individual households were randomly chosen over an 18-month period in Ireland. The results reveal that the (ANN) offers better results than ARIMA for the non-linear load data. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.description.woscitationindexScience Citation Index Expanded - Conference Proceedings Citation Index - Science
dc.identifier.doi10.1016/j.egyr.2023.01.060
dc.identifier.endpage557en_US
dc.identifier.issn2352-4847
dc.identifier.scopus2-s2.0-85146931900
dc.identifier.scopusqualityQ1
dc.identifier.startpage550en_US
dc.identifier.urihttps://doi.org/10.1016/j.egyr.2023.01.060
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41788
dc.identifier.volume9en_US
dc.identifier.wosWOS:001057943700067
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEnergy Reportsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectAuto Regressive Integrated Moving Average (ARIMA)en_US
dc.subjectSmart Griden_US
dc.subjectShort Time Load Forecasting (STLF)en_US
dc.subjectStorage Deviceen_US
dc.titleShort Term Load Forecasting Based on ARIMA and ANN Approachesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files