Publication:
Optimizing Micropropagation and Rooting Protocols for Diverse Lavender Genotypes: A Synergistic Approach Integrating Machine Learning Techniques

dc.authorscopusid24281979400
dc.authorscopusid57202605814
dc.authorscopusid58844376300
dc.authorscopusid58844376400
dc.authorscopusid36773090700
dc.authorscopusid6603354276
dc.authorscopusid6603354276
dc.authorwosidSimsek, Ozhan/J-1961-2018
dc.authorwosidDalda Sekerci, Akife/Hjp-1201-2023
dc.authorwosidTütüncü, Mehmet/V-8966-2017
dc.authorwosidIsak, Musab/Kbc-8853-2024
dc.authorwosidŞimşek, Özhan/J-1961-2018
dc.authorwosidDönmez, Dicle/J-7996-2018
dc.contributor.authorSimsek, Ozhan
dc.contributor.authorSekerci, Akife Dalda
dc.contributor.authorIsak, Musab A.
dc.contributor.authorBulut, Fatma
dc.contributor.authorIzgu, Tolga
dc.contributor.authorTütüncü, Mehmet
dc.contributor.authorDonmez, Dicle
dc.contributor.authorIDIsak, Musab A/0000-0002-5711-0118
dc.contributor.authorIDTütüncü, Mehmet/0000-0003-4354-6620
dc.contributor.authorIDİzgü, Tolga/0000-0003-3754-7694
dc.contributor.authorIDŞimşek, Özhan/0000-0001-5552-095X
dc.date.accessioned2025-12-11T01:33:38Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Simsek, Ozhan; Sekerci, Akife Dalda; Bulut, Fatma] Erciyes Univ, Agr Fac, Hort Dept, TR-38030 Kayseri, Turkiye; [Isak, Musab A.] Erciyes Univ, Grad Sch Nat & Appl Sci, Agr Sci & Technol Dept, TR-38030 Kayseri, Turkiye; [Izgu, Tolga] Inst BioEcon, Natl Res Council Italy CNR, I-50019 Florence, Italy; [Tutuncu, Mehmet] Univ Ondokuz Mayis, Dept Hort, TR-55200 Samsun, Turkiye; [Donmez, Dicle] Cukurova Univ, Biotechnol Res & Applicat Ctr, TR-01330 Adana, Turkiyeen_US
dc.descriptionIsak, Musab A/0000-0002-5711-0118; Tütüncü, Mehmet/0000-0003-4354-6620; İzgü, Tolga/0000-0003-3754-7694; Şimşek, Özhan/0000-0001-5552-095X;en_US
dc.description.abstractThis study comprehensively explored the micropropagation and rooting capabilities of four distinct lavender genotypes, utilizing culture media with and without 2 g/L of activated charcoal. A systematic examination of varying concentrations of BAP for micropropagation and IBA for rooting identified an optimal concentration of 1 mg/L for both BAP and IBA, resulting in excellent outcomes. Following robust root development, the acclimatization of plants to external conditions achieved a 100% survival rate across all genotypes. In addition to the conventional techniques employed, integrating machine learning (ML) methodologies holds promise for further enhancing the efficiency of lavender propagation protocols. Using cutting-edge computational tools, including MLP, RBF, XGBoost, and GP algorithms, our findings were rigorously examined and forecast using three performance measures (RMSE, R2, and MAE). Notably, the comparative evaluation of different machine learning models revealed distinct R2 rates for plant characteristics, with MLP, RBF, XGBoost, and GP demonstrating varying degrees of effectiveness. Future studies may leverage ML models, such as XGBoost, MLP, RBF, and GP, to fine-tune specific variables, including culture media composition and growth regulator treatments. The adaptability and ability of ML techniques to analyze complex biological processes can provide valuable insights into optimizing lavender micropropagation on a broader scale. This collaborative approach, combining traditional in vitro techniques with machine learning, validates the success of current micropropagation and rooting protocols and paves the way for continuous improvement. By embracing ML in lavender propagation studies, researchers can contribute to advancing sustainable and efficient plant propagation techniques, thereby fostering the preservation and exploitation of genetic resources for conservation and agriculture.en_US
dc.description.sponsorshipOffice of the Dean for Research at Erciyes Universityen_US
dc.description.sponsorshipThe authors would like to thank Eugene Steele, professional English editor of Erciyes University, for the English language editing of the manuscript. We thank the Office of the Dean for Research at Erciyes University for providing the necessary infrastructure and laboratory facilities at the ArGePark research building.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/horticulturae10010052
dc.identifier.issn2311-7524
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85183203043
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/horticulturae10010052
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44600
dc.identifier.volume10en_US
dc.identifier.wosWOS:001148955400001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofHorticulturaeen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMicropropagationen_US
dc.subjectRooting Efficiencyen_US
dc.subjectActivated Carbonen_US
dc.subjectBAPen_US
dc.subjectIBAen_US
dc.titleOptimizing Micropropagation and Rooting Protocols for Diverse Lavender Genotypes: A Synergistic Approach Integrating Machine Learning Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files