Publication:
Pan Evaporation Forecasting Using Empirical and Ensemble Empirical Mode Decomposition (EEMD) Based Data-Driven Models in the Euphrates Sub-Basin, Turkey

dc.authorscopusid57207685341
dc.authorwosidSezen, Cenk/Aaa-3312-2022
dc.contributor.authorSezen, Cenk
dc.contributor.authorIDSezen, Cenk/0000-0003-1088-9360
dc.date.accessioned2025-12-11T01:09:10Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sezen, Cenk] Ondokuz Mayis Univ, Fac Engn, Dept Civil Engn, Samsun, Turkiyeen_US
dc.descriptionSezen, Cenk/0000-0003-1088-9360;en_US
dc.description.abstractForecasting evaporation, an important variable in the hydrological cycle, is crucial for managing water resources and taking precautions against severe phenomena, such as droughts and floods. In this study, the prediction of daily pan evaporation was carried out in the Euphrates sub-basin, Turkey, which has different climate characteristics and is a critical region for Turkey or neighbouring countries. In this regard, two empirical models, namely the Griffith model and calibrated Hargreaves-Samani, and four ensemble empirical mode decomposition (EEMD) based data-driven models, namely EEMD-Random Forests (EEMD-RF), EEMD-Artificial Neural Network (EEMD-ANN), EEMD-Gradient Boosting Machines (EEMD-GBM), and EEMD-Regression Tree (EEMD-RT) were used for evaporation forecasting. The EEMD and Recursive Feature Elimination (RFE) were implemented as a signal decomposition technique and determination of the importance of the EEMD components, respectively. Although the empirical models yielded satisfactory performance, they predicted low and high evaporation values poorly, in general. The EEMD-RF, EEMD-ANN, and EEMD-GBM models performed better than the EEMD-RT model. The data-driven models, except EEMD-RT, outperformed the empirical models, especially regarding predicting extreme evaporation values. The sensitivity analysis indicated that wind speed, humidity, and maximum temperature could influence evaporation forecasting. This study shows that using data-driven models benefitting from EEMD and RFE can be a good alternative to empirical models for predicting evaporation.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s12145-023-01078-5
dc.identifier.endpage3095en_US
dc.identifier.issn1865-0473
dc.identifier.issn1865-0481
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85168293366
dc.identifier.scopusqualityQ2
dc.identifier.startpage3077en_US
dc.identifier.urihttps://doi.org/10.1007/s12145-023-01078-5
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41649
dc.identifier.volume16en_US
dc.identifier.wosWOS:001050015900001
dc.identifier.wosqualityQ2
dc.institutionauthorSezen, Cenk
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofEarth Science Informaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData-Drivenen_US
dc.subjectEmpirical Modelsen_US
dc.subjectPan Evaporationen_US
dc.subjectForecastingen_US
dc.subjectEuphrates Sub-Basinen_US
dc.subjectTurkeyen_US
dc.titlePan Evaporation Forecasting Using Empirical and Ensemble Empirical Mode Decomposition (EEMD) Based Data-Driven Models in the Euphrates Sub-Basin, Turkeyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files