Publication:
Lipschitz Spaces Under Fractional Convolution

dc.authorscopusid56543502200
dc.contributor.authorToksoy, E.
dc.date.accessioned2025-12-11T00:31:26Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Toksoy] Erdem, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractWe describe a generalization of Lipschitz spaces under fractional convolution and discuss some basic properties of these spaces. The aim of this work is to introduce and study a linear space Alip p β(α,1) (Rd ) of functions h belonging to Lipschitz space under fractional convolution whose fractional Fourier transforms F<inf>β</inf>h belongs to Lebesgue spaces. We show that this space becomes a Banach algebra with the sum norm ∥h∥<inf>lip</inf>β <inf>(</inf>α,<inf>1),p</inf> = ∥h∥<inf>(α,1)β</inf> + ∥F<inf>β</inf>h∥<inf>p</inf> and Θ (fractional convolution) convolution operation. Also we indicate that this space becomes an essential Banach module over L1 (Rd) with Θ convolution. © 2023 Tbilisi Centre for Mathematical Sciences. All rights reserved.en_US
dc.identifier.doi10.32513/asetmj/193220082332
dc.identifier.endpage56en_US
dc.identifier.issn2667-9930
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85184774485
dc.identifier.scopusqualityQ4
dc.identifier.startpage39en_US
dc.identifier.urihttps://doi.org/10.32513/asetmj/193220082332
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37003
dc.identifier.volume16en_US
dc.institutionauthorToksoy, E.
dc.language.isoenen_US
dc.publisherTbilisi Centre for Mathematical Sciencesen_US
dc.relation.ispartofAdvanced Studies-Euro Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutionen_US
dc.subjectFractional Fourier Transformen_US
dc.subjectLipschitz Spacesen_US
dc.titleLipschitz Spaces Under Fractional Convolutionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files